

Stormwater Division

MEMORANDUM

DATE:

March 13, 2010

TO:

Michael J. Gillis, Virginia Correctional Enterprises Document Management Services

FROM:

Jo Anna Ripley, Stormwater

PO:

270712

RE:

Files Approved for Scanning

General File ID or BMP ID:

PC175

PIN: 3240100026C

Subdivision, Tract, Business or Owner

Williamsburg Plantation and Virginia Department of

Name (if known):

Transportation (VDOT)

Property Description:

Williamsburg Plantation Section 5

Site Address:

4870 Longhill Road

(For internal use only)

Drawer: 4

Agreements: (in file as of scan date)

Book or Doc#:

Page:

Comments

THIS FACILITY IS NOT ACTUALLY ON INDICATED PIN; IT IS ADJACENT TO HUMELSINE PARKWAY EAST (ROUTE 199E) BEHIND INDIAN FIELDS WAY. This project was a joint venture between Williamsburg Plantation and VDOT. VDOT SWMF G. VDOT Proj 0199-047-F30; PE-103; RW-2

OWNER ADDRESS OWNER ADDRESS OWNER ADDRESS 2 CITY-STATE-ZIP CODE OWNER PHONE MAINT AGREEMENT Yes EMERG ACTION PLAN No	m ~	DDE 2	N			CITY-STATE Williamsburg, Va. 23185	FACILITY LOCATION	PROJECT NAME Williamsburg Plantation Sec 5 (VDOT	CONSTRUCTION DATE 7/1/2002	PIN NO 3240100026C	TAX PARCEL (32-4)(1-26C)		175	WATERSHED PC PRINTED ON	created by:	d Created:	
SERVICE AREA DESCRI IMPERV AREA acres RECV STREAM EXT DET-WQ-CTRL WTR QUAL VOL acre-ft CHAN PROT CTRL CHAN PROT VOL acre-ft SW/FLOOD CONTROL GEOTECH REPORT	SERVICE AREA IMPERV AREA RECY STREAM EXT DET-WQ-C WTR QUAL VOI CHAN PROT VI	SERVICE AREA MPERV AREA RECV STREAM EXT DET-WQ-C WIR QUAL VO	SERVICE AREA IMPERV AREA RECV STREAM EXT DET-WO-C	SERVICE AREA	SERVICE AREA			SVC DRAIN AREA acres			POINT VALUE	PM JCC BMP CODE	Tuesday, March 09, 2010 OIG BMP TYP	ED ON LANDUSE	SITE AREA acre	WS_BMPNO: Print MAINTENANCE PLAN Record MAINTENANCE PLAN	
RI Appartments & 13.18 UT of Pow Cu Yes 1.09 ft Yes Yes Yes	I Appartments & 13.18 UT of Pow Cl Yes 1.09 Yes	Appartments & 13.18 UT of Pow Co	Appartments & 13.18 UT of Pow Co					A acres 39.53			"	F2 Dry ED with forebay	Dry Pond - SM	R-2 (Appartments)	39,53	AN No	
TING TING 12004 2004 2004 C-2004	TING			T 3 W	3	TO-TA COTFECTA GIS	40 VB OUTELOW at-	2-YR OUTFLOW cfs	PERM POOL ELEV	DESIGN HW ELEV	EMERG SPILLWAY	ebay	OTLT BARRL SIZE inch	OTLT BARRL DESC	CTRL STRUC SIZE inches	CTRL STRUC DESC	
Yes :	red by	es es					96.95	29.94	NA	52.90	Yes		2	RCP Barrel		DI-7 grate	

BURG PLANIZ

J. 5: UNITS 97-1;

FOR

BURG PLANTATION, IN

VICINITY MAP (APPROX. SCALE 1"=1000')

DATE: AUGUST 23, 2000 REVISED: NOVEMBER 16, 2000 PROJECT NO.: 7555-12

Road, Suite 1 inia 23188 0040)-8994

5	5/4/01	REVISED PER JCSA COMMENTS DATED 5/1/01	CBR
4	4/17/01	REVISED PER JCC ENVIR. COMMENTS AND TO INDICATE PHASING	CBR
3	3/23/01	REVISED PER VDOT COMMENTS (DRY POND) FACILITY "G"	CBR
2	11/16/00	REVISED PER JCSA COMMENTS	CBR
1	10/18/00	REVISED SITE LAYOUT & REVISIONS PER JCC COMMENTS	CBR
No.	DATE	REVISION / COMMENT / NOTE	BY

AES CONSULTING ENGINEERS

Engineering, Surveying, and Planning 5248 Olde Towne Road, Suite 1 WILLIAMSBURG, VIRGINIA 23188

> Phone: (757) 253-0040 Fax: (757) 220-8994

Π	₩.	2500 77 L	/11/01/11/11/2	1
ĮL	(U) 7	HKVA\II	(G)	/ <u>^</u> \ ∟

ATTN:	Scott The	omas, P.E.		DATE JOB NO. 7555-12		
CO.:	JCC Enviromental Division			FROM: Bruce Abbott		
Address:				RE Williamsburg Plantation Section 5 SMP (VDOT Facility "G")		
CC:				SP-103-00 PC 175		
WE ARE	SENDING Y	OU THE FOL	LOWING ITEMS:			
	☐ Original(s)	⊠ Print(s)	☐ Plan(s)	☐ Specification(s) ☐ Change Order		
☐ Copy of letter(s) ☐ Other: Cor				struction Certification		
COPIES	DATE	No. of Pages		DESCRIPTION		
1 1		8 2	Construction Certif Record Drawings	ication		
THESE A	RE TRANSI	l MITTED as ch	ecked below:			
⊠ Fo	r your approv	val 🗌	For your signature	For review and comment		
☐ Fo	r your use		As you requested	☐ As requested by:		
Oth	her:					
REMARK	KS:					

James City County, Virginia Environmental Division

Stormwater Management / BMP Facilities Record Drawing and Construction Certification

Standard Forms & Instructions

Contents			Page
Record D	rawing and Construction Certi	fication Forms	•
	Section 1 – Site Information		1
	Section 2 – Construction Infor	rmation	2
	Section 3 – Owner / Designer	/ Contractor Information	2
	Section 4 – Professional Certi	fications	3
	Section 5 – Certification Requ	irements and Instructions	4
Record D	rawing Checklist		
I.	Methods and Presentation	(Required for All Facilities)	6
II.	Minimum Standards	(Required for All Facilities)	6
III.	Group A – Wet Ponds	•	8
IV.	Group B – Wetlands		9
V.	Group C – Infiltration Practice	es	10
VI.	Group D – Filtering Systems		11
VII.	Group E – Open Channel Syst	tems	12
VIII.	Group F – Extended Dry Dete	ntion	13
IX.	Group G – Open Spaces		14
X.	Storm Drainage Systems	(Associated with BMP's Only)	15
XII.	Other Systems	•	15
XIII.	References		16

Issue Date February 1, 2001

James City County, Virginia Environmental Division

Stormwater Management / BMP Facilities Record Drawing and Construction Certification Forms

(Note: In accordance with the requirements of the Chesapeake Bay Preservation Ordinance, Chapter 23, Section 23-10(4), BMP's shall be designed and constructed in accordance with the manual entitled James City County Guidelines for Design and Construction of Stormwater Management BMP's. Erosion and sediment control policy and approved plans generally require that at the completion of the project and prior to release of surety, an "as-built" plan prepared by a registered Professional Engineer or Certified Land Surveyor must be provided for the drainage system for the project, including any Best Management Practice (BMP) facilities. In addition, for BMP facilities involving the construction of an impounding structure or dam embankment, certification is required by a Professional Engineer who has inspected the structure during its construction. Currently there are over 20 water quality type BMP's accepted by the County.)

Section 1 – Site Information:

Project Name	e: W	/illiamsburg Plantation Section 5					
Structure/BM	IP Name: SN	ИР (VDOT F	Facility "G")				
Project Locat	tion: $\overline{43}$	70 Longhill	Road				
BMP Locatio	on: Be	tween India	n Fields Way &	Route 199			
County Plan	No.: <u>SF</u>)	- 103	- 00			
Project Type:	: Residential		Business Office	Tax Map/Parcel No.:	(32-4)(I-266)		
	☐ Institutional		Industrial Roadway	BMP ID Code (if known): Zoning District: Land Use:	Limited Resid	lential R-2	
	Other		11000	Site Area (sf or acres):	1.5 +/- Ac.		
	amsburg Plantation. ble Landmark to SW	M/BMP Faci	ility:	RTE. 199			
			,				
Nearest Verti	ical Ground Control	(if known):					
_	CC Geodetic Ground on Number or Name		USGS	☐ Temporary	☐ Arbitrary	Other	
Datu	ım or Reference Elev	ation: $\overline{49}$.	33				
Cont	trol Description:	To	p of the Outlet	Structure			
Cont	trol Location from Su	bject Facilit	y:				

<u>Section 2 – Stormwater Management / BMP Facility Construction Information:</u>

Approx. Construction	Start Date for SWM/		☐ Yes ☐ No January, 2002	Unknown					
		re during Construction: ucted Facility: George Nice & Sons	⊠ Yes □ No	Unknown					
		Monitored Construction: FES							
Date of Completion for			May, 2002						
Date of Record Drawin	ng/Construction Certi	fication Submittal:		1.					
completion of Stor Construction Cert	mwater Manage ifications must b inal inspection, a	ruction Certifications are requiment and/or BMP facility conserviewed and approved by the acceptance and bond or surety is	truction. Record L James City Count	rawings and					
Section 5 – Owner)	Designer / Contr	actor information.							
Owner/Developer:	(Note: Site Owner or Applicant responsible for development of the project.)								
	Name:	Virginia Department of Transportation	on						
	Mailing Address:	Williamsburg Residency							
		4451 Ironbound Road, Williamsburg,	Virginia 23185						
	Business Phone:	(757)253-4832	Fax: (757)253-5148						
	Contact Person:	Jim Brewer	Title:						
Design Professional:	Firm Name: Mailing Address: Business Phone: Fax: Responsible Plan F Title: Project Eng Plan Name: Wil Firm's Project No. Plan Date: 8/23/	liamsburg Plantation Sections 7555-12							
BMP Contractor:	Management / BM Name: Mailing Address: Business Phone: Fax: Contact Person: Site Foreman/Supe	George Nice & Sons 143 Skimino Road Williamsburg, VA 23188 (757) 565-2885 (757) 565-1526 Ray Nice		ater					
			·						

Section 4 – Professional Certifications:

Certifying Professionals: (Note: A Registered Professional Engineer of Certified Land Surveyor is responsible for preparation of a Record Drawing, sometimes referred to as an As-Built plan, for the drainage system for the project including any Stormwater Management/BMP Facilities. A Registered Professional Engineer is responsible for the inspection, monitoring and certification of Stormwater Management / BMP facilities during its construction.)

Record Drawing and Construction Certifications for Stormwater Management / BMP Facilities

Record Drawing Certification	Construction Certification
Firm Name: AES	Firm Name:
Mailing Address: 5248 Olde Towne Road	Mailing Address:
Williamsburg, VA 23188	
Business Phone: (757) 253-0040	Business Phone:
Business Phone: (757) 253-0040 Fax: (757) 220-8994	Fax:
Name: Richard A. Costello, P. E.	Name:
Title: President	Title:
Signature:	Signature:
Date:	Date:
I hereby certify to the best of my knowledge and belief that this record drawing represents the actual condition of the Stormwater Management / BMP facility. The facility appears to conform with the provisions of the approved design plan, specifications and stormwater management plan, except as specifically noted.	I hereby certify to the best of my knowledge and belief that this record drawing represents the actual condition of the Stormwater Management / BMP facility. The facility appears to conform with the provisions of the approved design plan, specifications and stormwater management plan, except as specificall noted.
CERTIFICATE 10.	PREVIOUSLY SUBMITTED
CERTIFICATE NO. 013250 OF ESSIONAL (Seal)	(Seal)

Virginia Registered Professional Engineer Or Certified Land Surveyor

Virginia Registered **Professional Engineer**

(Key for Checklist is as follows: XX Acceptable N/A Not Applicable Inc Incomplete) I. Methods and Presentation: (Required for all Stormwater Management / BMP facilities.) XXAll constructed facilities meet approved design plans, unless otherwise shown. Record information or deviations from approved design plan shown in clearly annotated format and/or boxed beside design values. XX2. Elevations to the nearest 0.1' unless higher accuracy is needed to show positive drainage. XX3. All plan sheets labeled with "RECORD DRAWING" in large text in lower right hand corner (Approved County Plan Number and BMP ID Code can be included if known). XX4. All plans sheet revision blocks modified to indicate date and record drawing status. XX5. All plan sheets have certification statements and certifying professional's signature and seal. II. Minimum Standards: (Required for all Stormwater Management / BMP facilities, as applicable.) XX1. All requirements of Section I (Methods and Presentation) apply to this section. XX2. Plan Views: Show general location, arrangement and dimensions. Location and alignment shall generally match approved design plans. XX 3. Profile or elevations along top or berm of the facility. At a minimum, elevations are required at each end, at intervals not to exceed 50 feet and where low spots may be present. Top of embankment or berm elevations must be no less than design elevation plus any settlement allowances. XX4. Top widths, berm widths and embankment side slopes. XX5. Show length, width and depth of facility or grading, contours or spot elevations as required to verify permanent pool and design storage volumes were met or were reasonably close to the approved design. Evaluation of as-built grading, contours, spot elevations, or cross-sections, may be necessary by the professional to ensure approved design configurations, depths and volumes were closely maintained. If grading or elevations are significantly different from the approved plan, the Environmental Division shall be contacted immediately to determine whether the variation is acceptable or whether further evidence will be required. Facilities which do not closely resemble approved plan grades, elevations or configurations may require regrading by the Contractor; check volumetric computations; and/or a check hydraulic routing to ensure approved design water surface elevations, discharges or freeboard were closely maintained. XX6. Cross-section of the embankment through the principal spillway or outlet barrel. Must extend at least 100 ft. downstream of the pipe outlet or to recorded site property line, whichever is closer. Proper correlation is required between principal spillway (control structure) crest, emergency spillway crest, orifice and weirs and the top of the dam or facility. All elevations and dimensions must reasonably match the design plan or be sequentially relative to each other and the facility must reflect the required design storage volume(s) and/or design depth. XX7. Profile or elevations along the entire centerline of the emergency spillway. Emergency spillway may be steeper, but no flatter or narrower than design. XX8. Elevation of the principal spillway crest or outlet crest of the structure.

XX	9.	Primary control structure (riser) diameter or dimensions, height, type of material and base size. Indicate provisions for access that are present such as steps, ladders, etc.
<u> XX</u>	10.	Dimensions, locations and elevations of outlet orifices, weirs, slots and drains.
N/A	11.	Type and size of anti-vortex and trash rack device. Height, diameter, dimensions, bar spacings (if applicable) and elevations relative to the principal spillway crest. Indicate if lockable hatch is present or not.
<u>XX</u>	12.	Type, location, size and number of anti-seep collars or documentation of other methods utilized for seepage control. May need to obtain this information during construction.
XX	13.	Top of impervious core embankment, core trench limits and elevation of cut-off trench bottom. May need to obtain this information during construction.
XX	14.	Elevation of the principal spillway barrel (outlet pipe) inlet and outlet invert.
XX	15.	Outlet barrel diameter, length, slope, type and thickness class of material and type of flared end sections, headwall or endwall.
XX	16.	Outfall protection dimension, type and depth of rock and if underlain filter fabric is present.
N/A	17.	BMP interior and periphery landscaping zones conform with arrangements and requirements of the approved design plan.
N/A	18.	Maintenance plan taken from approved design plan transposed onto record drawing set.
N/A	19.	Fencing location and type, if applicable to facility.
XX	20.	BMP vicinity properly cleaned of stockpiles and construction debris.
XX	21.	No visual signs of erosion or channel degradation immediately downstream of facility.
XX	22.	Any other information formally requested by the Environmental Division specific to the constructed SWM/BMP facility.

(Key for	Checklis	is as follows: XX Acceptable N/A Not Applicable Inc Incomplete)
VIII.	<u>Grou</u>	F – Extended Dry Detention (Includes F-1 Timber Walls; and F-2 Dry Extended Detention with Forebay)
<u>XX</u>	F1.	All requirements of Section II, Minimum Standards, apply to Group F facilities.
XX	F2.	Basin bottom has positive slope and drainage from all basin inflow points to the riser (or outflow) location.
N/A	F3.	Timber wall BMP used in intermittent stream only. (ie. Prohibited in perennial streams.)
Inc	F4.	Forebay provided approximately 20 ft. upstream of the facility. Forebays generally 4 to 6 feet in depth.
N/A	F5.	A reverse slope pipe, vertical stand pipe or mini-barrel and riser was provided to prevent clogging
XX	F6.	Principal spillway and outlet barrel provided consisting of reinforced concrete pipe with O-Ring gaskets for watertight joint construction.
N/A	F7.	Mini-barrel and riser, if used, contains a removable trash rack to reduce clogging.
XX	F8.	Low flow orifice, if used, has a minimum diameter of three (3) inches or two (2) inches if internal orifice control was utilized and a small, cage type external trash rack.
N/A	F9.	Timbers properly reinforced or concrete footing provided if soil conditions were prohibitive.
N/A	F10.	Timber wall cross members extended to a minimum depth of two (2) feet below ground elevation.
N/A	F11.	Protection against erosion and scour from the low flow orifice and weir-flow trajectory provided.
<u>XX</u>	F12.	Stilling basin or standard outlet protection provided at principal spillway outlet.
XX	F13.	Adequate, direct access provided to the facility. Access corridor to facility is at least ten (10) feet wide, slope is less than twenty (20) percent and appropriate stabilization provided for equipment and vehicle use. Access extends to forebay, standpipe and timber wall, as applicable.
N/A	F14.	No visual signs of undercutting of timber walls or clogging of the low orifice were present.
XX	F15.	No visual signs of erosion or channel degradation immediately downstream of facility.
XX	F16.	No visible signs of accumulated silt/sediment were present in the facility following construction or alternately, accumulated silt/sediment was properly removed and no adverse affects to the function of the facility are anticipated.

CURRENTLY FUNCTIONING AS A SEDIMENT BASIN.

(Key for Checklist is as follows: XX Acceptable N/A Not Applicable Inc Incomplete)

X. Storm Drainage Systems (Associated with BMP's Only)

(Includes all incidental stormwater drainage conveyance systems associated with SWM/BMP facilities such as onsite or offsite storm drains, open channels, inlets, manholes, junctions, outlet protections, deflectors, etc. These facilities are external to the treatment function of, but are directly associated with drainage to and/or from a constructed SWM/BMP facility. The intent of this portion of the certification is to accurately identify the type and quantity of inflow or outflow points associated with the facility for future reference. The Professional may use his/her own discretion to determine inclusive facilities to meet the intent of this section. As a general rule, storm drainage systems would include incidental facilities to the nearest access structure upslope or downslope from the normal physical limits of the facility or 800 feet of storm drainage conveyance system length, whichever is less.)

- XX SD1. All requirements of Section II, Minimum Standards, apply to Storm Drainage Systems.
- XX SD2. Horizontal location of all pipe and structures relative to the SWM/BMP facility.
- XX SD3. Type, top elevation and invert elevation of all access type structures (inlets, manholes, etc.).
- XX SD4. Material type, size or diameter, class, invert elevations, lengths and slopes for all pipe segments.
- XX SD5. Class, length, width and depth of riprap and outlet protections or dimensions of special energy dissipation structures.
- XII. Other Systems

(Includes any non-typical, specialty, manufactured or innovative stormwater management/BMP practices or systems generally accepted for use as or in conjunction with other acceptable stormwater management / BMP practices. Requires evidence of prior satisfactory industry use and prior Environmental Division approval, waiver or exception.)

- N/A O1. All requirements of Section II, Minimum Standards, apply to this section.
- N/A O2. Certification criteria to be determined on a case-by-case basis by the Environmental Division specific to the proposed SWM/BMP facility.

AES CONSULTING ENGINEERS

Engineering, Surveying, and Planning 5248 Olde Towne Road, Suite 1 WILLIAMSBURG, VIRGINIA 23188

LETTER OF TRANSMITTAL

Phone: (757) 253-0040 Fax: (757) 220-8994

ATTN:	Scott Th	omas, P.E	.	DATE 3/27/03	JOB NO. 7555-12	
CO.:	JCC Env	riromental D	Division	FROM: Bruce Abbott		
Address:				RE Williamsburg Planta SMP (VDOT Facility		
CC:						
WE ARE SENDING YOU THE FOLLOWING ITEMS:				Attached □ Under separate cover via		
] Original(s)	⊠ Print(s)	☐ Plan(s)	☐ Specification(s)	☐ Change Order	
	Copy of le	tter(s)	Other: Cons	struction Certification		
COPIES	DATE	No. of Pages		DESCRIPTION		
1		8	Construction Certifi Record Drawings			
THESE A	RE TRANSI	MITTED as ch	ecked below:			
⊠ For your approval			For your signature	☐ For review an	d comment	
☐ For	your use		As you requested	As requested by:		
☐ Oth	er:					
REMARK	S:					

James City County, Virginia Environmental Division

Stormwater Management / BMP Facilities Record Drawing and Construction Certification

Standard Forms & Instructions

		Page
rawing and Construction Certif	ication Forms	
Section 1 – Site Information		1
	mation	2
		2
Section 4 – Professional Certif	fications	3
		4
rawing Checklist		
Methods and Presentation	(Required for All Facilities)	6
Minimum Standards	(Required for All Facilities)	6
	· -	8
		9
	es	10
		11
	tems	12
Group F – Extended Dry Dete	ention	13
		14
	(Associated with BMP's Only)	15
- -		15
_		16
	Section 1 – Site Information Section 2 – Construction Infor Section 3 – Owner / Designer Section 4 – Professional Certif Section 5 – Certification Requ Prawing Checklist Methods and Presentation Minimum Standards Group A – Wet Ponds Group B – Wetlands Group C – Infiltration Practice Group D – Filtering Systems Group E – Open Channel Systems	Section 2 – Construction Information Section 3 – Owner / Designer / Contractor Information Section 4 – Professional Certifications Section 5 – Certification Requirements and Instructions Prawing Checklist Methods and Presentation (Required for All Facilities) Minimum Standards (Required for All Facilities) Group A – Wet Ponds Group B – Wetlands Group C – Infiltration Practices Group D – Filtering Systems Group E – Open Channel Systems Group F – Extended Dry Detention Group G – Open Spaces Storm Drainage Systems (Associated with BMP's Only) Other Systems

James City County, Virginia Environmental Division

Stormwater Management / BMP Facilities Record Drawing and Construction Certification Forms

(Note: In accordance with the requirements of the Chesapeake Bay Preservation Ordinance, Chapter 23, Section 23-10(4), BMP's shall be designed and constructed in accordance with the manual entitled James City County Guidelines for Design and Construction of Stormwater Management BMP's. Erosion and sediment control policy and approved plans generally require that at the completion of the project and prior to release of surety, an "as-built" plan prepared by a registered Professional Engineer or Certified Land Surveyor must be provided for the drainage system for the project, including any Best Management Practice (BMP) facilities. In addition, for BMP facilities involving the construction of an impounding structure or dam embankment, certification is required by a Professional Engineer who has inspected the structure during its construction. Currently there are over 20 water quality type BMP's accepted by the County.)

Section 1 – Site Information:

Project Name: Structure/BMP Name: Project Location: BMP Location: County Plan No.:	SMP (VDO 4370 Longh	g Plantation Section Facility "G") ill Road lian Fields Way & - 103			
Project Type:	er	☐ Business ☐ Office ☐ Industrial ☐ Roadway	Tax Map/Parcel No.: BMP ID Code (if known): Zoning District: Land Use: Site Area (sf or acres):	(32-4)(I-266) Limited Reside 1.5 +/- Ac.	
Brief Description of Storn area of Williamsburg Pla	mwater Managem ntation.	ent/BMP Facility:	Upgrade of existing VDOT BI	VII TO METIGE GIE	mingo nom germen.
Nearest Visible Landmar	k to SWM/BMP I	acility:	RTE. 199		
	c Ground Control): USGS	☐ Temporary	☐ Arbitrary	☑ Other
Station Number Datum or Refere	ence Elevation:	49.33 Top of the Outlet	Structure		
Control Location	tion: n from Subject Fa		Situature		

Section 2 - Stormwater Management / BMP Facility Construction Information: Yes □ No Unknown PreConstruction Meeting Held for Construction of SWM/BMP Facility: January, 2002 Approx. Construction Start Date for SWM/BMP Facility: Unknown Yes No Facility Monitored by County Representative during Construction: Name of Site Work Contractor Who Constructed Facility: George Nice & Sons Name of Professional Firm Who Routinely Monitored Construction: FES Date of Completion for SWM/BMP Facility: May, 2002 Date of Record Drawing/Construction Certification Submittal: (Note: Record Drawing and Construction Certifications are required within thirty (30) days of the completion of Stormwater Management and/or BMP facility construction. Record Drawings and Construction Certifications must be reviewed and approved by the James City County Environmental Division prior to final inspection, acceptance and bond or surety release.) <u>Section 3 – Owner / Designer / Contractor Information:</u> Owner/Developer: (Note: Site Owner or Applicant responsible for development of the project.) Virginia Department of Transportation Name: Mailing Address: Williamsburg Residency 4451 Ironbound Road, Williamsburg, Virginia 23185 Fax: (757)253-5148 **Business Phone:** (757)253-4832 Contact Person: Title: Jim Brewer (Note: Professional Engineer or Certified Land Surveyor responsible for the design and Design Professional: preparation of plans and specifications for the Stormwater Management / BMP facility.) Firm Name: **AES** Mailing Address: 5248 Olde Towne Road Williamsburg, VA 23188 **Business Phone:** (757) 253-0040 (757) 220-8994 Fax: Responsible Plan Preparer: Charles Records Title: Project Engineer Williamsburg Plantation Sections Plan Name: Firm's Project No. 7555-12 Plan Date: 8/23/00 Rev. 10/16/00 Sheet No.'s Applicable to SWM/BMP Facility: (Note: Site Work Contractor directly responsible for construction of the Stormwater BMP Contractor: Management / BMP facility.) George Nice & Sons 143 Skimino Road Mailing Address: Williamsburg, VA 23188 **Business Phone:** (757) 565-2885 Fax: (757) 565-1526 Contact Person: Ray Nice Site Foreman/Supervisor: Specialty Subcontractors & Purpose (for BMP Construction Only):

Section 4 - Professional Certifications:

Virginia Registered Professional Engineer

Or Certified Land Surveyor

Certifying Professionals: (Note: A Registered Professional Engineer of Certified Land Surveyor is responsible for preparation of a Record Drawing, sometimes referred to as an As-Built plan, for the drainage system for the project including any Stormwater Management/BMP Facilities. A Registered Professional Engineer is responsible for the inspection, monitoring and certification of Stormwater Management / BMP facilities during its construction.)

Record Drawing and Construction Certifications for Stormwater Management / BMP Facilities

Record Drawing Certification	Construction Certification
Firm Name: AES	Firm Name:
Mailing Address: 5248 Olde Towne Road	Mailing Address:
Williamsburg, VA 23188	
Business Phone: (757) 253-0040	Business Phone:
Fax: (757) 220-8994	Fax:
Name: Richard A. Costello, P. E.	Name:
Title: President	Title:
Signature:	Signature:
Date:	Date:
I hereby certify to the best of my knowledge and belief that this record drawing represents the actual condition of the Stormwater Management / BMP facility. The facility appears to conform with the provisions of the approved design plan, specifications and stormwater management plan, except as specifically noted.	I hereby certify to the best of my knowledge and belief that this record drawing represents the actual condition of the Stormwater Management / BMP facility. The facility appears to conform with the provisions of the approved design plan, specifications and stormwater management plan, except as specifically noted.
CERTIFICATE 40. O13250 OFESSIONAL ON OTHER ON OFESSIONAL ON OTHER ON OTHER	PREVIOUSLY SUBMITTED
(Seal)	(Seal)

Virginia Registered Professional Engineer

Inc Incomplete) (Key for Checklist is as follows: XX Acceptable N/A Not Applicable Methods and Presentation: (Required for all Stormwater Management / BMP facilities.) I. All constructed facilities meet approved design plans, unless otherwise shown. Record XX1. information or deviations from approved design plan shown in clearly annotated format and/or boxed beside design values. Elevations to the nearest 0.1' unless higher accuracy is needed to show positive drainage. XX2. All plan sheets labeled with "RECORD DRAWING" in large text in lower right hand corner 3. XX(Approved County Plan Number and BMP ID Code can be included if known). All plans sheet revision blocks modified to indicate date and record drawing status. XX4. All plan sheets have certification statements and certifying professional's signature and seal. XX5. Minimum Standards: (Required for all Stormwater Management / BMP facilities, as applicable.) II. All requirements of Section I (Methods and Presentation) apply to this section. XX1. Plan Views: Show general location, arrangement and dimensions. Location and alignment shall XX2. generally match approved design plans. Profile or elevations along top or berm of the facility. At a minimum, elevations are required at XX3. each end, at intervals not to exceed 50 feet and where low spots may be present. Top of embankment or berm elevations must be no less than design elevation plus any settlement allowances. Top widths, berm widths and embankment side slopes. XX4. Show length, width and depth of facility or grading, contours or spot elevations as required to XX5. verify permanent pool and design storage volumes were met or were reasonably close to the approved design. Evaluation of as-built grading, contours, spot elevations, or cross-sections, may be necessary by the professional to ensure approved design configurations, depths and volumes were closely maintained. If grading or elevations are significantly different from the approved plan, the Environmental Division shall be contacted immediately to determine whether the variation is acceptable or whether further evidence will be required. Facilities which do not closely resemble approved plan grades, elevations or configurations may require regrading by the Contractor; check volumetric computations; and/or a check hydraulic routing to ensure approved design water surface elevations, discharges or freeboard were closely maintained. Cross-section of the embankment through the principal spillway or outlet barrel. Must extend at XX6. least 100 ft. downstream of the pipe outlet or to recorded site property line, whichever is closer. Proper correlation is required between principal spillway (control structure) crest, emergency spillway crest, orifice and weirs and the top of the dam or facility. All elevations and dimensions must reasonably match the design plan or be sequentially relative to each other and the facility must reflect the required design storage volume(s) and/or design depth. Profile or elevations along the entire centerline of the emergency spillway. Emergency spillway XX7. may be steeper, but no flatter or narrower than design. Elevation of the principal spillway crest or outlet crest of the structure. $\boldsymbol{X}\boldsymbol{X}^{\cdot}$ 8.

XX	9.	Primary control structure (riser) diameter or dimensions, height, type of material and base size. Indicate provisions for access that are present such as steps, ladders, etc.
XX	10.	Dimensions, locations and elevations of outlet orifices, weirs, slots and drains.
N/A	11.	Type and size of anti-vortex and trash rack device. Height, diameter, dimensions, bar spacings (if applicable) and elevations relative to the principal spillway crest. Indicate if lockable hatch is present or not.
XX	12.	Type, location, size and number of anti-seep collars or documentation of other methods utilized for seepage control. May need to obtain this information during construction.
XX	13.	Top of impervious core embankment, core trench limits and elevation of cut-off trench bottom. May need to obtain this information during construction.
XX	14.	Elevation of the principal spillway barrel (outlet pipe) inlet and outlet invert.
XX	15.	Outlet barrel diameter, length, slope, type and thickness class of material and type of flared end sections, headwall or endwall.
XX	16.	Outfall protection dimension, type and depth of rock and if underlain filter fabric is present.
<u>N/A</u>	17.	BMP interior and periphery landscaping zones conform with arrangements and requirements of the approved design plan.
N/A	18.	Maintenance plan taken from approved design plan transposed onto record drawing set.
N/A	19.	Fencing location and type, if applicable to facility.
XX	20.	BMP vicinity properly cleaned of stockpiles and construction debris.
XX	21.	No visual signs of erosion or channel degradation immediately downstream of facility.
XX	22.	Any other information formally requested by the Environmental Division specific to the constructed SWM/BMP facility.

(Key for	Checklis	t is as follows: XX Acceptable <u>N/A</u> Not Applicable <u>Inc</u> Incomplete)
VIII.	Group	o F - Extended Dry Detention (Includes F-1 Timber Walls; and F-2 Dry Extended Detention with Forebay)
XX	F1.	All requirements of Section II, Minimum Standards, apply to Group F facilities.
XX	F2.	Basin bottom has positive slope and drainage from all basin inflow points to the riser (or outflow) location.
N/A	F3.	Timber wall BMP used in intermittent stream only. (ie. Prohibited in perennial streams.)
Inc	F4.	Forebay provided approximately 20 ft. upstream of the facility. Forebays generally 4 to 6 feet in depth.
N/A	F5.	A reverse slope pipe, vertical stand pipe or mini-barrel and riser was provided to prevent clogging
XX	F6.	Principal spillway and outlet barrel provided consisting of reinforced concrete pipe with O-Ring gaskets for watertight joint construction.
N/A	F7.	Mini-barrel and riser, if used, contains a removable trash rack to reduce clogging.
XX	F8.	Low flow orifice, if used, has a minimum diameter of three (3) inches or two (2) inches if internal orifice control was utilized and a small, cage type external trash rack.
N/A	F9.	Timbers properly reinforced or concrete footing provided if soil conditions were prohibitive.
N/A	F10.	Timber wall cross members extended to a minimum depth of two (2) feet below ground elevation.
N/A	F11.	Protection against erosion and scour from the low flow orifice and weir-flow trajectory provided.
XX	F12.	Stilling basin or standard outlet protection provided at principal spillway outlet.
XX	F13.	Adequate, direct access provided to the facility. Access corridor to facility is at least ten (10) feet wide, slope is less than twenty (20) percent and appropriate stabilization provided for equipment and vehicle use. Access extends to forebay, standpipe and timber wall, as applicable.
N/A	F14.	No visual signs of undercutting of timber walls or clogging of the low orifice were present.
XX	F15.	No visual signs of erosion or channel degradation immediately downstream of facility.
XX	F16.	No visible signs of accumulated silt/sediment were present in the facility following construction or alternately, accumulated silt/sediment was properly removed and no adverse affects to the function of the facility are anticipated.

CURRENTLY FUNCTIONING AS A SEDIMENT BASIN.

(Key for Checklist is as follows: XX Acceptable N/A Not Applicable Inc Incomplete)

X. Storm Drainage Systems (Associated with BMP's Only)

(Includes all incidental stormwater drainage conveyance systems associated with SWM/BMP facilities such as onsite or offsite storm drains, open channels, inlets, manholes, junctions, outlet protections, deflectors, etc. These facilities are external to the treatment function of, but are directly associated with drainage to and/or from a constructed SWM/BMP facility. The intent of this portion of the certification is to accurately identify the type and quantity of inflow or outflow points associated with the facility for future reference. The Professional may use his/her own discretion to determine inclusive facilities to meet the intent of this section. As a general rule, storm drainage systems would include incidental facilities to the nearest access structure upslope or downslope from the normal physical limits of the facility or 800 feet of storm drainage conveyance system length, whichever is less.)

- XX SD1. All requirements of Section II, Minimum Standards, apply to Storm Drainage Systems.
- XX SD2. Horizontal location of all pipe and structures relative to the SWM/BMP facility.
- XX SD3. Type, top elevation and invert elevation of all access type structures (inlets, manholes, etc.).
- XX SD4. Material type, size or diameter, class, invert elevations, lengths and slopes for all pipe segments.
- XX SD5. Class, length, width and depth of riprap and outlet protections or dimensions of special energy dissipation structures.
- XII. Other Systems

..........

(Includes any non-typical, specialty, manufactured or innovative stormwater management/BMP practices or systems generally accepted for use as or in conjunction with other acceptable stormwater management / BMP practices. Requires evidence of prior satisfactory industry use and prior Environmental Division approval, waiver or exception.)

- N/A O1. All requirements of Section II, Minimum Standards, apply to this section.
- N/A O2. Certification criteria to be determined on a case-by-case basis by the Environmental Division specific to the proposed SWM/BMP facility.

AES CONSULTING ENGINEERS

Engineering, Surveying, and Planning 5248 Olde Towne Road, Suite 1

WILLIAMSBURG, VIRGINIA 23188

LETTER OF TRANSMITTAL

Phone: (757) 253-0040 Fax: (757) 220-8994

ATTN:	Mr. Darryl	Cook		11/12/04	7555-12	
CO.:	JCC Environmental Division			FROM: Charles Records		
Address:				RE		
•				Williamsburg Plan	tation	
cc:				Section 5 SWM As	-builts	
-						
WE AF	RE SENDING Y	OU THE FOL	LOWING ITEMS:		r via	
	☐ Original(s)	☐ Print(s)	☐ Plan(s)	☐ Specification(s)	Change Order	
	☐ Copy of le	tter(s)	Other:			
COPIES	S DATE	No. of Pages		DESCRIPTION		
2 2	SWM Record Drawings					
_	Construction Certification Documents					
THESE	E ARE TRANSI	MITTED as ch	ecked below:			
⊠ F	or your approv	val 🗌	For your signature	☐ For review ar	nd comment	
⊠ F	or your use		As you requested	☐ As requested	l by:	
REMAI Darryl, Here as Section this pro- informa	re a few more on 5 SWN Facility oject was closed ation. Thanks.	ty. Until Walte	previously submitted	information for the William Letter of Credit extension have any questions or nee	request letter, I thought	
Charles	s Records					

FOUNDATION ENGINEERING SCIENCE, INC.

- Geotechnical Engineering [Drilling; Foundation, Retaining Wall & Pavement Design]
- Environmental Management [Phase | & | |, Asbestos and Lead Paint Sampling]
- Construction Materials Testing & Inspection [Quality Control & Quality Assurance]
- Foundation & Pavement Problems Evaluations & Remediations
- Value Engineering During Design & Construction

RECEIVED MAY 2 3 2002

Mr. J.P. Ottino III, V.P. Williamsburg Plantation, Inc.

Berkeley South Building Executive Suite 121 3015 N. Ocean Boulevard Ft. Lauderdale, Florida 33308

Re:

Earthen Dam Certification Report

Williamsburg Plantation, Section Five - Earthen Dam

James City County, Virginia FES Report No. 1-9C120.345

APR 1 2003

AES CONSULTING ENGINEERS

May 20, 2002

Dear Mr. Ottino:

Foundation Engineering Science, Inc. (FES) hereby certifies to the best of our knowledge and belief that the Earthen Dam for the Storm Water Management/BMP facility for Williamsburg Plantation, Section Five was monitored and constructed in general accordance with the provisions of the approved design plans, specifications and storm water management plan.

FES appreciates the opportunity to be of service to Williamsburg Plantation, Inc. on this important project and looks forward to its successful completion. Should you have any questions regarding this report, please do not hesitate to contact the undersigned.

RAJA S. ELAWAR

No. 026383

Respectfully submitted,

FOUNDATION ENGINEERING SCIENCE, INC.

Idres Hawarry 3/20/02

Project Engineer

XCopies:

(1) Bush Companies-Plantation Group, LLC - Mr. Kert

(1) James City County - Mr. Gerald E. Lewis

(1) VDOT - Mr. Mark D. Yeatts

(1) George Nice & Sons, Inc. - Mr. Ray Nice, P.E.

(1) AES Consulting Engineers - Mr. Richard Costello, P.E.

C:\company\OLD Files\1999\cmt\1-9C120.345

Principal Engineer

VA Reg. No. 26383

FOUNDATION ENGINEERING SCIENCE, INC.

- · Geotechnical Engineering [Drilling; Foundation, Retaining Wall & Pavement Design]
- Environmental Management [Phase | & | |, Asbestos and Lead Paint Sampling]
- Construction Materials Testing & Inspection [Quality Control & Quality Assurance]
- Foundation & Pavement Problems Evaluations & Remediations
- Value Engineering During Design & Construction

Mr. Ken Yerby Williamsburg Plantation Inc. 4029 Ironbound Road, Suite 200 Williamsburg, Virginia 23188

June 5, 2001

Re: Interim Earthen Dam Report

Williamsburg Plantation, Coach House Lane-Earthen Dam

James City County, Virginia FES Report No. 1-9C120.145

Dear Mr. Yerby:

Foundation Engineering Science, Inc. (FES) hereby certifies to the best of our knowledge and belief that the Storm Water Management/BMP facility for Williamsburg Plantation, Coach House Lane was monitored and constructed in general accordance with the provisions of the approved design plans, specifications and storm water management plan.

FES appreciates the opportunity to be of service to Williamsburg Plantation, Inc. on this important project and looks forward to its successful completion. Should you have any questions regarding this report, please do not hesitate to contact the undersigned.

Respectfully submitted,

FOUNDATION ENGINEERING SCIENCE, INC.

Idres Hawarry

Project Engineer

Raja S. Elawar, P.E. Principal Engineer

/A Reg. No. 26383

XCopies:

(1) Client

C.\company\oldfiles\1999\cmt\1-9C120.145

FOUNDATION ENGINEERING SCIENCE, INC.

- Geotechnical Engineering [Drilling; Foundation, Retaining Wall & Pavement Design]
- Environmental Management [Phase | & | |, Asbestos and Lead Paint Sampling]
- Construction Materials Testing & Inspection [Quality Control & Quality Assurance]
- Foundation & Pavement Problems Evaluations & Remediations
- Value Engineering During Design & Construction

MAY 2002
RECEIVED
ENVIRONMENTAL DIVISION
2002
2002
2002

Mr. J.P. Ottino III, V.P. Williamsburg Plantation, Inc.

Berkeley South Building Executive Suite 121 3015 N. Ocean Boulevard Ft. Lauderdale, Florida 33308 PC 175) 5P-103-00

Re:

Earthen Dam Certification Report

Williamsburg Plantation, Section Five - Earthen Dam

James City County, Virginia FES Report No. 1-9C120.345

Dear Mr. Ottino:

Foundation Engineering Science, Inc. (FES) hereby certifies to the best of our knowledge and belief that the Earthen Dam for the Storm Water Management/BMP facility for Williamsburg Plantation, Section Five was monitored and constructed in general accordance with the provisions of the approved design plans, specifications and storm water management plan.

FES appreciates the opportunity to be of service to Williamsburg Plantation, Inc. on this important project and looks forward to its successful completion. Should you have any questions regarding this report, please do not hesitate to contact the undersigned.

RAJA S. ELAWAI

No. 026383

Respectfully submitted,

FOUNDATION ENGINEERING SCIENCE, INC.

Idres Hawarry S/20/02

Project Engineer

XCopies:

(1) Bush Companies-Plantation Group, LLC - Mr. Ken Vers

(1) James City County - Mr. Gerald E. Lewis

(1) VDOT – Mr. Mark D. Yeatts

(1) George Nice & Sons, Inc. - Mr. Ray Nice, P.E.

(1) AES Consulting Engineers - Mr. Richard Costello, P.E.

C:\company\OLD Files\1999\cmt\1-9C120.345

Principal Engineer

VA|Reg. No. 26383

Raia S

9 PT. BMP 4 TAC 19.06 onsite 27.34 offsite

James City County, Virginia Environmental Division

Stormwater Management/BMP Record Drawing and Construction Certification Review <u>Tracking Form</u>

County	Plan No.	. <i>5P-</i> 10	3-00	
Project		WMB & PL	ANTA-TT	IN SEC 5 (VOIT FAULTY 6)
		agement Facility: RY POI	10	
Phase:				456
T		tion Received.	Date/By:	MAR 28 "03 AES
3	Admini	strative Check.		3/27/03 AES; AB Cert 3/27/03 AES 5/20/02 FES d for all BMPs after Feb 1st 2001Only)
	9/	Record Drawing	Date/By:	3/27/03 HES, HB (PYT 3/21/03 A.
	9 /	Construction Certification	Date/By:	5/20/02 FES
	<u> </u>	RD/CC Standard Forms	(Require	d for all BMPs after Feb 1" 2001Only)
		Insp/Maint Agreement	#/Date:	
		BMP Maintenance Plan	Location	:
	Ct. 4 days	Other:	oniring DI	D/CC or County comment in plan review file.
	Standar Yes			Location:
		County BMP ID Code:	Code:	PC175
		nary Input into Division's "As-Built		Log"
	Add I o	cation to GIS Database Man. Obtai	n site info	rmation (GPIN, Owner, Site Area, Address, etc.)
	Prelimi	nary Log into Access BMP Database	e (BMP ID	#, Plan No., GPIN, Project Name, etc.)
ਕ ⁄_		Project File Review (correspondence		
- P				IP plan and detail information, etc.).
□ NA	Inspect	or Check of RD/CC (forward to insp	ector using	g transmittal for cursory review).
9	Pre-Ins	pection Drawing Review - Approved	d Plan (Qu	ick look prior to Field Inspection).
J.		spection (FI) Performed	Date:	11/16/04 WAC
व्यव्यव्यव्यव्यव्यव्यव्यव्यव्यव्यव्यव्यव	Record	Drawing (RD) Review (***)	Date:	WAL
9	Constru	action Certification (CC) Review	Date:	547
	Actions			
	<u> </u>	No comments.	_	
		Comments. Letter Forwarded.	Date:	
		Record Drawing (RD)		
		Construction Certification (CC))	
		Construction-Related (CR)		
		☐ Site Issues (SI) ☐ Other :		
П	Second	Submission:		
		ection (if necessary):		
i i	Accent	able for stormwater managment faci	lity purpos	es (RD/CC/CR/Other). Proceed with bond release.
	If ok fo	or full release, notify Inspector and I	nspector S	upervisor using "Surety Request Form".
<u>a</u> /_	Check/	Clean active file of any remaining n	naterial and	l finish "As-Built" file.
3//		County BMP Inventory/Inspection		
里	Copy F	Final Inspection Report into County	BMP Inspe	ection Program file.
		Digital Photographs of BMP and lo		
		JCC Hydrology & Hydraulic databa		
	Compl	ete "As-built Tracking Log".	7 .	PRIPE
			′ ′	<i>,</i>
BMP C	Certificati	ion Information Acceptable		1./.
DI D		1 #1= 6		Date: ///4/104
Pian R	eviewer:	- I W	m	Date
		\checkmark //		A
*** Ca	e senarat	e checklist.		KELENSED 10-17-05
56	c separat	V Checkingt.		11-77-20
				10 11 -7

Commonwealth of Virginia
Department of Transportation

RECEIVE

OS

ENVIRONMENTAL

DAVId A. Steele, PE

Interim Resident Engineer

Philip Shucet Commissioner

January 12, 2005

lulilullullullull GEORGE NICE & SONS, INC. 143 SKIMINO ROAD WILLIAMSBURG, VA 23188

Attention: S. RAY NICE, P.E.

Land Use Permit Completi	on Notice
Permit Number:	535-22779
Route:	199, Route 199
Location:	James City
Your Reference Number:	
Completion Date:	1/12/2005 8:33:02 AM
Surety Type:	Single Performance Bond
Surety Amount:	100000
Obligation Amount:	100000
Refund Amount:	100000

Dear Permittee:

In early January, we received the As-Built drawings for the Williamsburg Plantation SWMB on Rte. 199 in James City County. This was the final punch list item required to complete this permit. With all the other items being taken care of, the permit referenced above has been satisfactorily completed.

If you have any questions, please contact the following Permit section:

Williamsburg Residency 4451 Ironbound Rd. Williamsburg, VA 23188 (757)253-4832

Sincerely,

Mark D. Yeatts

Mark D. Yeatts

Permit and Subdivision Specialist Senior

Cc: Ken Yerby, Plantation Group, LLC
James City County Environmental Division

SCOTT, 1/4/64

WITH THIS INFORMATION

BONG FROM VOOT, I BELIEVE

THE BOND ON THE RETERENCED

BMP CAN BE RELEASED.

ok to do Surety regulat form.

Stormwater Management / BMP Inspection Report Detention and Retention Pond Facilities

County BMP ID Code (if	f known): <u>PC</u>	175			
Name of Facility: DR	y Paro			BMP No.: 1 of / Date: 11/11/04	
Name of Facility: Day Posso BMP No.: 1 of / Date: 11/11/04 Location: VILLIAMSBURG RANIFATRAL Section 5 By 199 \$ 1101AV FIRSTS WAY					
Name of Owner:					
Name of Inspector:	SILL CAS	W.			
Type of Facility:	M BASIL	(
Weather Conditions:	Juney			☐ County BMP Inspection Program ☐ Owner Inspection	
If an inspection item is a	(not applicable	e, mark NA, otherwise	mark the appropri	ate column.	
Routine - The item c	hecked requirence in the checked required in the check	res attention, but does res immediate attentio	not present an imn n to keep the BMP	program is currently satisfactory. No action required. nediate threat to the function/integrity of the BMP. operational and to prevent damage to the facility.	
Facility Item	О.К.	Routine	Urgent	Comments	
Embankments and Sid	e Slopes:				
Grass Height	~			24"-35" No 7235	
Vegetation Condition	•				
Tree Growth	~				
Erosion	v				
Trash & Debris					
Seepage	V				
Fencing or Benches				:	
Interior Landscaping/I	Planted Areas	: None 🗆 Cons	structed Wetland/Sha	allow Marsh	
Vegetated Conditions					
Trash & Debris					
Floating Material		-			
Erosion					
Sediment					
Dead Plant					
Aesthetics					
Other					

Notes: CAT TAILS INDADED PSASIAL ENTINELY

Facility atem	<u> </u>	Moderne		Communic
Water Pools:	Permanent Poo	ol (Retention Basin)	Shallow Marsh (Dete	ntion Basin) Z None, Dry (Detention Basin)
Shoreline Erosion				
Algae	_			
Trash & Debris				
Sediment	/			
Aesthetics	/			
Other				
Inflows (Describe Type	es/Locations)	:		
Condition of Structure				
Erosion	/			
Trash and Debris				
Sediment	_			
Outlet Protection	/			
Other				
Principal Flow Contro	l Structure -	Riser, Intake, etc. (De	scribe Type): <i>OL</i> -	7 (VAT CAD)
Condition of Structure	/			
Corrosion	1		•	
Trash and Debris	/			
Sediment	/			
Vegetation	1			
Other				
Principal Outlet Struc	ture - Barrel	, Conduit, etc. :		
Condition of Structure				
Settlement				
Trash & Debris				
Erosion/Sediment				
Outlet Protection				
Other				
Emergency Spillway ((Overflow):	J		
Vegetation	1 -			
Lining				
Erosion				
Trash & Debris				
Other				
Notes:	<u>.</u>	<u></u>	<u> </u>	

					Comments	
Nuisance Type Conditions:						
Mosquito Breeding						
Animal Burrows						
Graffiti						
Other						
Surrounding Perimete	r Conditions:					
Land Uses	/					
Vegetation	. 0					
Trash & Debris						
Aesthetics	V					
Access /Maintenance Roads or Paths						
Other						
READ IN PRO	BE IN PRICES	EREDING	embinic 50	ANKE/AKLESS FROM (X2) Downed B.	OF IMH STRUCTURE, 36" 199 PERTILL OF ACCESS NO DANGER CF	
Overall Environmental	Division Internal Rat	ing: <u></u>		, ,		
Signature Company	4 () 5		,	Date: 11/16/64 w	<u> </u>	
Title: CIVIL FULL	here?					

 $SWMProg\BMP\CoInspProg\InspForms\DetRet.wpd$

DUKETY REQUEST FORM Project Name: Williamsburg Randation - Section 5 PRASE IEZ Requested By: Am Phone Number: Date Requested: 10-12-04 DUE 10-19-01 Luc Completed & Requester Notified: Supportanting issues with the alculate Reduce Release

But on this project?

Please Let me have -LUIT VDOT Surety Amount Needed \$ Comments Erosion Control Surety Calculate Reduce Release Checklist 5P-103-00; PC175 BMP Certification / Record Drawings Ashults & Const Cert received, but not reviewed yet. Final Inspection not performed yet. Hold 50% of BMP cost + reducebond Surety Amount Needed \$_____ Comments

INSP. ____ DEC ___ ST ____PTM ____

RECORD OF PHONE CONVERSATION

Call To: Ken Yerby - 220-2874

Date: 5/14/02

Call By: Bob Lane

Phase 5

Re: Williamsburg Plantation-Dam Certification and As-builts

I asked Ken about the status of the certification and the as-built drawings. He called back after talking with Rich Costello, FES. According to Rich, they will complete the as-builts and assemble the certification package within 30 days. (They prefer to wait until the grass is established to do the as-built work.) They intend to send us a complete package at that time.

WMB6 PLANTATION 97-133

SEC 5: UNITS 97-133

SEC 5: UNITS 97-133

SEC 5: UNITS 97-133

PENDENT # PENDENT # 103;

UPOT PROJECT # 7-F30; PE-103;

UPOT PROJECT # 7-F30; PE-103;

UPOT PROJECT # 7-F30; PE-103;

EW 204, C-501

EW 204, C-501

CORTINEO CORTINEO WMG BEANT SEC 5 VOUT GAMP

WILLIAMSBURG PLANTATION

SECTION 5: UNITS 97-133

GENERAL NOTES

- 1. PROPERTY ZONING: LIMITED RESIDENTIAL DISTRICT R-2.
- 2. PROPERTY TAX PARCEL NO.: PART OF (32-4) (1-26C)
- 3. PROPERTY ADDRESS: 4870 LONGHILL ROAD
- 4. THIS SITE PLAN IS FOR A SECTION OF TIMESHARE UNITS WHICH IS PART OF AN APPROVED OVERALL CLUSTER DEVELOPMENT PLAN (JCC CASE NO. MP-02-00).
- 5. THE UNITS ARE 2 STORIES, USE GROUP B, AND CONSTRUCTION TYPE 3B. MAXIMUM BUILDING HEIGHT IS
- 6. Overall site density is 3.99 units/ acre as approved with amended master PLAN MP-02-00. TOTAL APPROVED UNITS TO DATE = 96 UNITS.
- CONTRACTOR SHALL VERIFY ALL-DIMENSIONS AND SHALL NOTIFY MISS UTILITY (1-800-552-7001
- 10. THE CONTRACTOR IS RESPONSIBLE FOR OBTAINING ALL NECESSARY PERMITS PRIOR TO COMMENCEMENT OF

- SERVICE AUTHORITY. ALL PROPOSED WATER AND SANITARY IMPRIOVEMENTS TO BE
- 14. ALL PARKING SPACES SHALL BE DELINEATED WITH PAINT STRIPING. THE MINIMUM NUMBER OF PARKING SPACES SHALL BE 2.5 PER DWELLING UNIT, IN ACCORDANCE WITH SEC. 24-59 (A) (1) OF THE JCC ZONING ORDINANCE. HANDICAP PARKING SPACES SHALL BE DESIGNATED BY ABOVE GROUND SIGNS PER
- 15. REFUSE TO BE REMOVED BY PRIVATE CONTRACTOR.
- 16. THE SITE DOES NOT LIE WITHIN ANY RESOURCE PROTECTION AREAS.
- 17. THIS PROPERTY LIES IN ZONE "X" (AREAS DETERMINED TO BE OUTSIDE THE 500 YEAR FLIOD PLAIN) AS SHOWN ON COMMUNITY PANEL #510201 0035 B, DATED 2/6/ 1991 OF THE FLOOD INSURAICE RATE MAPS FOR JAMES CITY COUNTY, VIRGÍNIA.
- 18. CONTOUR INTERVAL IS ONE FOOT.
- 19. ANY NEW SIGNS SHALL BE IN ACCORDANCE WITH ARTICLE II, DIVISION 3 OF THE JCC ZONIG ORDINANCE.
- 20. ANY OLD WELLS THAT MAY BE ON-SITE THAT WILL NOT BE USED MUST BE PROPERLY ASANDONED ACCORDING TO STATE PRIVATE WELL REGULATIONS AND JAMES CITY COUNTY CODE.
- 21. OWNER/ DEVELOPER: THE BERKELEY GROUP

MR. J.P. OTTINO, III BERKELEY SOUTH BLDG, EXEC. SUITE 115 3015 N. OCEAN BLVD FT. LAUDERDALE, FL 33308

INDEX OF SHEETS

SHEET NUMBER

DESCRIPTION

COVER SHEET SITE AND UTILITY PLAN/GRADING, DRAINAGE AND E&S PLAN (PHASE I) UTILITY PROFILES, NOTES AND DETAILS (PHASE II) SITE PLAN (PHASE II) INTERIM GRADING, EROSION AND SEDIMENT CONTROL PLAN (PHASE II) GRADING, EROSIOIN AND SEDIMENT CONTROL PLAN (PHASE II) DRAINAGE AND UTILITY PLAN UTILITY PROFILES LANDSCAPE PLAN AND DETAILS LIGHTING PLAN AIND DETAILS ENVIRONMENTAL INVENTORY NOTES AND DETAILS

NOTES AND DETAILS

SMP (VDOT FACILITY "G") NOTES AND DETAILS

CONSULTING ENGINEERS

5248 Olde Towne Road, Suite 1 Williamsburg, Virginia 23188 (757) 253-0040 Fax (757) 220-8994

FOR

*G*REYHOUND

HAMLET

ESTATES

THE MEWS AT

WILLIAMSBURG

VICINITY MAP (APPROX. SCALE 1"=1000')

DATE: AUGUST 23, 2000 REVISED: NOVEMBER 16, 2000

PROJECT NO.: 7555-12

WINDSOR

WILLIAMSBURG

LONGHILL

COLONY

WILLIAMSBURG PLANTATION, INC.

CHISEL

STRATFORD

PATRIOT

LONGHILL/

WOODS/

SKIPWITH

FARMS

EASTERN

STATE

EXISTING

RECORD DRAWING BASED ON INFORMATION AS

SURVEYED 5-02 & 3-04 BY A.E.S. CONSULTING

ENGINEERS

PROPOSED

HEREBY CERTIFY TO THE BEST OF MY JUDGEMENT, KNOWLEDGE, AND BELIEF THAT THIS RECORD DRAWING REPRIESENTS THE CONDITIONS OF THE SITE ON THE DATE IT WAS SURVEYED. THE SITE APPEARS TO CONFORM WITH THE PROVISIONS OF THE APPROVED

_EGEND

RICHARD A. COSTELLO CERTIFICATE NO.

3/10/04 RECORD DRAWING STORM WATER MANAGEMENT/ BMP FACILIT 4 4/17/01 REVISED PER JCC ENVIR. COMMENTS AND TO INDICATE PHASING REVISED PER JCSA COMMENTS 1 10/18/00 REVISED SITE LAYOUT & REVISIONS PER JCC COMMENTS REVISION / COMMENT / NOTE

JCC S-103-00 RECORD DRAWING-3/10/04 SHEET NO. 1

DAVE 253-5150 MEMPOR

7 3/10/04 RECORD DRAWING STORM WATER MANAGEMENT/ BMP FACILITY CBR 5/27/03 RECORD DRAWING STORM WATER MANAGEMENT/ BMP FACILITY CBR 5/4/01 REVISED PER JCSA COMMENTS DATED 5/1/01 CBR 4 4/17/01 REVISED PER JCSA COMMENTS AND TO INDICATE PHASING CBR 3 3/23/01 REVISED PER VDOT COMMENTS (DRY POND) FACILITY "G" CBR 11/16/00 REVISED PIER LAYOUT & REVISIONS PER JCS COMMENTS CBR NO. DATE REVISION / COMMENT / NOTE BY

248 Olde Towne Road, Suite 1 Williamsburg, Virginia 23188 (757) 253-0040 Fax (757) 220-8994

ATION
ATION
ATION
ANTATION INC

OT FACILITY "G") NOTES AND DETAIL.

WILLIAMSBUR
WILLIAMSBUR
SECTION 5
OWNER/DEVELOPER: WILL

Designed Drawn
DPW/CBR RMK
Scale Date
AS NOTED 8/23/00

Project No.
7555-12

Drawing No.

JCC S-103-00 RECORD DRAWING-3/10/04

1

Test/INSP.
Reports for

- Geotechnical Engineering [Drilling; Foundation, Retaining Wall & Pavement Design]
- Environmental Management [Phase | & | |, Asbestos and Lead Paint Sampling]
- Construction Materials Testing & Inspection [Quality Control & Quality Assurance]
- Foundation & Pavement Problems Evaluations & Remediations

Value Engineering During Design & Construction

May 21, 2002

Project Engineer

Mr. J.P. Ottino, III, V.P. Williamsburg Plantation, Inc. Berkley South Building Executive Suite 121 3015 N. Ocean Boulevard Fort Lauderdale, Florida 33308

Re: Field Compaction Density Report

Williamsburg Plantation, Section Five - Earthen Dam

James City County, Virginia FES Report No. 1-9C120.348

Dear Mr. Ottino:

Pursuant to the Contractor's request, a Foundation Engineering Science, Inc. (FES) representative visited the project site on May 15, 2002. The specific purpose of this visit was to perform compaction density testing on the design subgrade material for the access roadway within the earthen Dam. These tests were performed in general accordance with the American Society for Testing and Materials (ASTM) Test Designation D-2922, titled "Density of Soil and Soil-Aggregate in Place by Nuclear Methods (Shallow Depth)".

FES appreciates the opportunity to be of service to Williamsburg Plantation, Inc. on this important project and looks forward to its successful completion. Should you have any questions regarding this report, please do not hesitate to contact the undersigned.

Respectfully submitted,

FOUNDATION ENGINEERING SCIENCE, INC.

Project Engineer

Field Compaction Density Report

Field Compaction Density Location Sketch

XCopies:

Attachments:

(1) Bush Companies-Plantation Group, LLC - Mr. Ken Yerby

(1) James City County - Mr. Gerald E. Lewis

(1) VDOT - Mr. Mark D. Yeatts

(1) George Nice & Sons, Inc. - Mr. Ray Nice, P.E.

(1) AES Consulting Engineers - Mr. Richard Costello, P.E.

c:\company\oldfiles\1999\cmt\1-9C120.348

11843 B Canon Boulevard

Newport News, Virginia 23606 Telephone: (757) 873-4113 Fax: (757) 873-4114

Project Name Williamsburg Plantation, Some Project No. Client 1-9C120.348 Client Williamsburg Plantation, In Berkley South Building Executive Suite 121 3015 N. Ocean Boulevard Fort Lauderdale, Florida 33 Project Location James City County, Virgining Gauge # 26729 Model # 3430 Proctor Dry Density² Moist. #200³ (%) Passing Moist. #200³ (%) 48 117.5 12.0 42.9 44 112.3 12.1 39.5	No. Column Colu	y Std. Ct. rial Description ddish brown si Brown silty S D.D. MOI (PCF) (% 109.1 15. 112.7 15.	We 2746 an & Class ST (J)	reneral Contract Arth Contract Veather Moisture ssification ND (SM) SM) W.D. (PCF) Contract Contra	actor	Clear St. So	sh Com Nice &	FES		ement e effort e effort
Client Williamsburg Plantation, In Berkley South Building Executive Suite 121 3015 N. Ocean Boulevard Fort Lauderdale, Florida 33 Project Location James City County, Virgini Gauge # 26729 Model # 3430 Proctor Dry Opt. Passing Moist. #2003 (%) (%) 48 117.5 12.0 42.9 44 112.3 12.1 39.5 TEST DEPTH ELEVATION (feet) 1 12 Design Subgrade 2 6 Design Subgrade 3 12 Design Subgrade 4 6 Design Subgrade	Density Mater	ddish brown si Brown silty S D.D. MOI (PCF) (% 109.1 15. 112.7 15.	We 2746 a & Class SAND (SI ST V) (I ST) (I ST	Veather Moisture ssification ND (SM) SM) W.D. (PCF) C0 125.7	e Std. C	Clear St. So On On PASS	669 Durce	FES	S REP.: Compa Require Moderate	etion ement e effort
Berkley South Building Executive Suite 121 3015 N. Ocean Boulevard Fort Lauderdale, Florida 33 Project Location James City County, Virgini Gauge # 26729 Model # 3430 Proctor Dry Opt. Passing Moist. #2003 (pcf) (%) (%) 48 117.5 12.0 42.9 44 112.3 12.1 39.5 TEST DEPTH ELEVATION (inches) (feet) 1 12 Design Subgrade 2 6 Design Subgrade 3 12 Design Subgrade 4 6 Design Subgrade	Density Mater	ddish brown si Brown silty S D.D. MOI (PCF) (% 109.1 15. 112.7 15.	We 2746 Ity SANI SAND (SI ST V) (I	Moisture Ssification ND (SM) SM) W.D. (PCF) Co	Std. C	Clear St. So On On PASS	669 Durce	FES	S REP.: Compa Require Moderate Moderate	etion ement e effort
Executive Suite 121 3015 N. Ocean Boulevard Fort Lauderdale, Florida 33	Density Mater	ddish brown si Brown silty S D.D. MOI (PCF) (% 109.1 15. 112.7 15.	2746 n & Class Ity SANI SAND (SI ST V) (I 3 1	Moisture ssification ⁴ ND (SM) SM) W.D. (PCF) CO 125.7	% OMP	Or Or PASS	n-site		Compa Require Moderate	etion ement e effort
Gauge # 26729 Model # 3430 Proctor Dry Density² (pcf) Opt. Passing Moist. #200³ (%) #200³ (%) 48 117.5 12.0 42.9 44 112.3 12.1 39.5 TEST NO. (inches) ELEVATION (feet) 1 1 12 Design Subgrade 2 6 Design Subgrade 3 12 Design Subgrade 4 6 Design Subgrade	PROC. NO. (1997) 1997 1997 1997 1997 1997 1997 1997	ddish brown si Brown silty S D.D. MOI (PCF) (% 109.1 15. 112.7 15.	2746 n & Class Ity SANI SAND (SI ST V) (I 3 1	Moisture ssification ⁴ ND (SM) SM) W.D. (PCF) CO 125.7	% OMP	Or Or PASS	n-site		Compa Require Moderate	etion ement e effor
Proctor Dry Density² (pcf) Opt. Moist. #200³ (%) Passing Moist. #200³ (%) 48 117.5 12.0 42.9 44 112.3 12.1 39.5 TEST DEPTH (inches) ELEVATION (feet) 1 1 12 Design Subgrade 2 6 Design Subgrade 3 12 Design Subgrade 4 6 Design Subgrade	PROC. NO. (C	ddish brown si Brown silty S D.D. MOI (PCF) (% 109.1 15. 112.7 15.	lty SANI SAND (SI ST V) (I	ND (SM) SM) W.D. (PCF) C0	% OMP	On On PASS	n-site		Compa Require Moderate	etion ement e effor
Density ² Moist. #200 ³ (pcf) (%) (%) (%) 48	PROC. NO. (1) 44 1 44 1 48 1	ddish brown si Brown silty S D.D. MOI (%) 109.1 15.	Ity SANI SAND (SI ST V) (I 3 1	ND (SM) SM) W.D. (PCF) Co	OMP	On On PASS	n-site n-site		Require Moderate Moderate	ement e effor
44 112.3 12.1 39.5 TEST NO. DEPTH (inches) ELEVATION (feet) 1 1 12 Design Subgrade 2 2 6 Design Subgrade 3 12 Design Subgrade 4 6 Design Subgrade 4 Design Subgrade	PROC. NO. (1) 44 1 44 1 48 1	Brown silty S D.D. MOI (PCF) (% 109.1 15. 112.7 15.	SAND (SI ST V) (I 3 1	SM) W.D. (PCF) CO 125.7 9	OMP	PASS	n-site		Moderate	effor
TEST DEPTH (inches) (feet) 1 12 Design Subgrade 2 6 Design Subgrade 3 12 Design Subgrade 4 6 Design Subgrade	NO. (1) 44 1 44 1 48 1	D.D. MOI (% 109.1 15. 112.7 15.	ST V (1 3 1	W.D. (PCF) Co	OMP	PASS				
NO. (inches) (feet) 1 12 Design Subgrade 2 6 Design Subgrade 3 12 Design Subgrade 4 6 Design Subgrade	NO. (1) 44 1 44 1 48 1	(PCF) (% 109.1 15. 112.7 15.) (I 3 1	(PCF) Co	OMP		FAII		REMA	RKS
2 6 Design Subgrade 3 12 Design Subgrade 4 6 Design Subgrade	44 1 48 1	112.7 15.			7.2	X	<u> </u>			
3 12 Design Subgrade 4 6 Design Subgrade	48 1		3 1	120.0						
4 6 Design Subgrade			~ ^	129.9 1	00.4	X				
		117.5 13.	9 1	133.8 1	0.00	X				
TECTNO	48 1	119.8 14.	0 1	136.5 1	02.0	X				
IESI NO.	TAN STATE	TEST	LOCAT	ATION						
1 Site No. 1, Service Road, See atta	tached figure	æ								
2 Site No. 1, Service Road, See atta	tached figure	e								
3 Site No. 2, Service Road, See att	tached figure	:e								
4 Site No. 2, Service Road, See att	tached figure	e								
SPEC. REQUIREMENTS Utility Tren	nch	Sidewalk	Str	Structure	R	oadway	/Parking	3	Gene (Dar	
COMPACTION (%)					- 1	Гор 12'' Гор б''	$^{\circ} \ge 95.0$ 100.0%			
MOISTURE (%)						O.M. <u>+</u>	20%			
Comments		······································				-				

GEOTECHNICAL, ENVIRONMENTAL & CONSTRUCTION INSPECTION

11843-B CANON BOULEVARD NEWPORT NEWS, VIRGINIA 23606 PHONE: 757-873-4113 FAX: 757-873-4114

EMAIL: RELAWAR@FESVA.COM

DATE: **MAY 15, 2002**

SCALE: N/A

FES REPORT NO.

1-9C120.348

CONSTRUCTION INSPECTION SERVICES

WILLIAMSBURG PLANTATION, SECTION FIVE – EARTHEN DAM

JAMES CITY COUNTY, VIRGINIA

FIGURE – 1
FIELD DENSITY COMPACTION
LOCATION SKETCH

- Geotechnical Engineering [Drilling; Foundation, Retaining Wall & Pavement Design]
- Environmental Management [Phase | & | |, Asbestos and Lead Paint Sampling]
- Construction Materials Testing & Inspection [Quality Control & Quality Assurance]
- Foundation & Pavement Problems Evaluations & Remediations
- Value Engineering During Design & Construction

Mr. J.P. Ottino III, V.P. Williamsburg Plantation, Inc. Berkeley South Building Executive Suite 121 3015 N. Ocean Boulevard Ft. Lauderdale, Florida 33308

Re: Design Subgrade Evaluation Report

Earthen Dam Maintenance Access Road Williamsburg Plantation, Section Five

James City County, Virginia FES Report No. 1-9C120.344

LOCATION	PAVEMENT ST	RUCTURAL SECTION
District Park, Entrance Road	Compacted Design Subgrade	
	8" Crushed Stone Aggregate VDOT 21B	

1.0 SITE OBSERVATIONS

The design subgrade was observed and reported by the grading contractor to be approximately at the final design elevations, compaction and compaction density tests were performed. The contractor placed crushed stone aggregate at the entrance from Route 199. The evaluated area is shown in the attached Figure 1. The exposed design subgrade was field classified to consist of reddish brown sandy silt (A-4) with trace clay.

The exposed design subgrade were proof rolled under the observation of an experienced Geotechnical Engineer with FES using a fully-loaded, tandem truck [dual axle with approximate gross weight of 25 tons]. Two (2) overlapping passes were made by the truck over the explored graded areas. In general, the result of these testing procedures indicated that the exposed design subgrade to be stable.

Design Subgrade Evaluation Report Earthen Dam Maintenance Access Road Williamsburg Plantation, Section Five James City County, Virginia FES Report No. 1-9C120.344

The existing Earthen Dam Evaluation Report, prepared by Foundation Engineering Science, Inc. (FES) for the subject project [FES Report No. 1-9C120.115, dated February 21, 2000] was reviewed. The soils encountered during our site observation appeared to generally be consistent with the soils described within the subsurface exploration study report.

2.0 CONCLUSIONS AND RECOMMENDATIONS

Based on the results of the proof roll [stability test], our site observations and review of the project plans and VDOT specifications, the following conclusions and recommendations are presented.

- 1. The design subgrade material was stable and ready for placement of crushed stone aggregate in general accordance with the project plans and VDOT specifications.
- 2. The top six (6) inches of the design subgrade and crushed stone aggregate layer should be compacted to a minimum dry density of 100.0 percent of the theoretical and/or laboratory maximum dry density and to full depth. A minimum of two (2) bulk samples will be obtained from the crushed stone aggregate VDOT Type 21B, and one (1) sample per (500) tons placed on this project for the performance of classification gradation testing.
- 3. The subgrade materials are moisture sensitive; in this regard, a re-evaluation of the subgrade materials should be performed if this material is exposed to weather effects (such as significant rainfall). This re-evaluation will consist of performing an additional inspection by an experienced professional Geotechnical Engineer or their representative to determine if the subgrade has deteriorated due to excessive moisture and/or is still capable of supporting the proposed and proposed traffic loads.

FES appreciates the opportunity to be of service to Williamsburg Plantation, Inc. on this important project and looks forward to its successful completion. Should you have any questions regarding this report, please do not hesitate to contact the undersigned.

Principal Engineer VA Reg. No. 26383

Respectfully submitted,

FOUNDATION ENGINEERING SCIENCE, INC.

Idres Hawarry 5/20102

Project Engineer

Attachments:

Figure 1 -Dam Sub-grade soils Evaluation Location Sketch

XCopies:

(1) Bush Companies-Plantation Group, LLC - Mr. Ken Yerby

(1) James City County - Mr. Gerald E. Lewis

(1) VDOT - Mr. Mark D. Yeatts

(1) George Nice & Sons, Inc. – Mr. Ray Nice, P.E.

(1) AES Consulting Engineers - Mr. Richard Costello, P.E.

C:\company\OLD Files\1999\cmt\1-9C120.344

FOUNDATION ENGINEERING SCIENCE, INC.
GEOTECHNICAL, ENVIRONMENTAL & CONSTRUCTION INSPECTION

11843-B CANON BOULEVARD NEWPORT NEWS, VIRGINIA 23606 PHONE: 757-873-4113 FAX: 757-873-4114

EMAIL: RELAWAR@FESVA.COM

DATE: SCALE: FES REPORT NO.

MAY 15, 2002 N/A 1-9C120.344

CONSTRUCTION INSPECTION SERVICES

WILLIAMSBURG PLANTATION, SECTION FIVE - EARTHEN DAM

JAMES CITY COUNTY, VIRGINIA

FIGURE - 1

MAINTENANCE ACCESS ROAD DESIGN

SUBGRADE EVALUTION LOCATION

SKETCH

- Geotechnical Engineering [Drilling; Foundation, Retaining Wall & Pavement Design]
- Environmental Management [Phase | & | |, Asbestos and Lead Paint Sampling]
- Construction Materials Testing & Inspection [Quality Control & Quality Assurance]
- Foundation & Pavement Problems Evaluations Remediations
- Value Engineering During Design & Construction

Mr. J.P. Ottino III, V.P. Williamsburg Plantation, Inc. Berkeley South Building Executive Suite 121 3015 N. Ocean Boulevard Ft. Lauderdale, Florida 33308

May 13, 2002

Re: Seepage and Erosion of Dam Surface Slopes Report
Williamsburg Plantation - Section Five, Earthen Dam
James City County, Virginia
FES Report No. 1-9C120.337

Dear Mr. Ottino:

Pursuant to the contractor's request, an experienced Professional Geotechnical Engineer with Foundation Engineering Science, Inc. (FES) visited the project site on May 3, 2002. The specific purpose of this site visit was to re-evaluate the side slopes of the cut areas within the recently re-constructed storm water management detention basin (SWMB) and earthen dam located within Williamsburg Plantation -Section Five in James City County, Virginia. The western portion of the cut slopes within the SWMB are three (3) horizontal to one (1) vertical [3H:1V].

A severe storm swept the area the night before on May 2, 2002, which yielded approximately two (2) inches of rain within a short period of time from approximately ten (10) pm to approximately four (4) am.

1.0 SITE OBSERVATIONS

The re-evaluated west side cut slopes of the SWMB appeared to have dried following the rain fall event that occurred on May 1, 2002 and seepage from a portion of the western cut slopes appeared to have ceased.

The side slopes appeared to be intact with exception of the areas containing severe surface water run off. The surface erosion appeared to be slight [less than three (3) to six (6) inches in depth]. The majority of the existing ground surfaces above the western and north western portion of the SWMB are higher and drain towards the SWMB. A severe erosion occurred on May 2, 2002 at the manhole located at the north end of the SWMB. The earthwork contractor repaired this erosion.

The Existing Earthen Dam Evaluation Report, prepared by Foundation Engineering Science, Inc. (FES) for the subject project [FES Report No. 1-9C120.115, dated February 21, 2000] was reviewed. The soils encountered during our site observation appeared to generally be consistent with the soils described within the subsurface exploration study report. However, a subsurface exploration or a geotechnical engineering study was not requested or performed for the SWMB.

11843-B CANON BOULEVARD ➤ NEWPORT NEWS, VIRGINIA 23606 ➤ PHONE: (757) 873-4113 FAX: (757) 873-114

Seepage and Erosion of Dam Surface Slopes Report Williamsburg Plantation Section Five, Earthen Dam James City County, Virginia FES Report No. 1-9C120.340

. 4

2.0 CONCLUSIONS AND RECOMMENDATIONS

Based on the results of our site observations, engineering judgment and extensive knowledge with similar soils, the following conclusions and recommendations are presented.

- 1. The cut side slopes located at the western portion of the SWMB appear to be stable with limited erosion. However, the slopes at the north and north western portion of the SWMB and specifically around the recently constructed manhole appear to have experienced severe erosion. The slopes at the north western portion of the SWMB have been repaired by the earthwork contractor.
- 2. Seepage and surface run off will always occur at this SWMB due to its location and the type of soils encountered on this project site.
- 3. Seepage from the cut slopes cannot be prevented; however, the erosion capability of this seepage could become severe if not treated or stabilized. Due to the cut slopes requiring placement of topsoil and seeding and being 3H:1V, FES does not recommend stabilizing these slopes at this time. However, these slopes should be observed during the warranty period to insure stability is permanent.
- 4. If during the construction and warranty period these slopes experience erosion, the earthwork contractor should be directed to stabilize these slopes with a permanent stabilizing erosion geotextile engineered product. A permanent stabilizing mat such as VDOT EC-3 type geotextile engineered product to prevent severe erosion from occurring could be utilized.
- 5. Surface erosion can be controlled by directing the surface run off during severe and extended rain fall events to specific areas that are not detrimental to the SWMB or the earthen dam. Surface run off should be directed from the western and north western portion of the SWMB by constructing surface ditches that are stabilized with VDOT type EC-3 geotextile engineered products.
- 6. The roadway portion of the SWMB appeared to experience some erosion. In this regard, FES recommends constructing drainage ditches along the western portion of this roadway and directed to a catch basin or over the over flow structure of the earthen dam.
- 7. FES should be present on site during installation of the geotextile engineered product to insure proper placement by the earthwork contractor.

Seepage and Erosion of Dam Surface Slopes Report Williamsburg Plantation Section Five, Earthen Dam James City County, Virginia FES Report No. 1-9C120.340

FES appreciates the opportunity to be of service to **Williamsburg Plantation**, **Inc.** on this important project and looks forward to its successful completion. If you have any questions in regards to our report, please do not hesitate to contact the undersigned.

Respectfully Submitted,

FOUNDATION ENGINEERING SCIENCE, INC.

Raja S. El-Awar, P.F. Principal Engineer

VA Reg. No. 26383

Attachments:

Figure 1 -Dam Sub-grade soils Evaluation Location Sketch

XCopies:

(1) Bush Companies - Plantation Group, LLC - Mr. Ken Yerby

(1) James City County - Mr. Gerald E. Lewis

(1) VDOT - Mr. Mark D. Yeatts

(1) George Nice & Sons, Inc. - Mr. Ray Nice, P.E.

(1) AES Consulting Engineers - Mr. Richard Costello, P.E.

 $C: \verb|| company|| Old files || 1999|| cmt || 1-9C120.340$

11843 B Canon Boulevard Newport News, Virginia 23606 Telephone (757) 873-4113 Fax (757) 873-4114

email: relawar@fesva.com

			CONC	CONCRETE FIELD INSPECTION REPORT	FIELD	INSPE	CTION	REPOI	RT ¹		Page 1 of 2
Project Name	Williamsb	Williamsburg Plantation, Section Five, Earthen Dam	ion, Sectio	m Five, E	arthen Da		Project No.	100	1-9C1	1-9C120.329	
Client & Address	The Bush	The Bush Companies				Date	ıte		April	April 17, 2002	
	4029 Iron	4029 Ironbound Road, Suite 200	1, Suite 20	Õ		W	Weather		Sunny		
	Williamst	Williamsburg, Virginia 23188	ia 23188			ଦୁ	General Contractor	ntractor	The B	The Bush Companies	es
						င္ပ	Concrete Contractor	ontractor	U.S. 8	U.S. & H. Company, Inc	/, Inc.
Project Location	James Cit	James City County, Virginia	/irginia			耳	FES Representative	entative	LS		
FES observed the placement of 6 cubic yards of 3000 psi concrete (Mix ID 30-111) delivered to the project by Custom Concrete	cement of 6	cubic yards	of 3000 j	osi concret	e (Mix II	30-111)	delivered	to the pro	ject by Cu	Istom Concrete	Ċ.
Set No. Time	Ticket Number	Truck Number	Batch Time	Time Placed		Conc. Temp ²	Air³	Water (Gal.)	Slump ⁴ (in.)	Total Concrete	Location
Cyl. Made					(F)	(F)				Placed (c.y.)	
I 5 4:10	994485	169	3:30	4:30	91	85	4.0	N/A	4.0	6.0	Concrete Cradle Slab
					SPECIFI	CATION	REQUIR	SPECIFICATION REQUIREMENTS			
No. of Cylinders	5/5	5/50 yds.		Slum	Slump (in.)	4 <u>+</u> 1	Air (%)	(%)	4.0	Strength	Strength at 28 days (psi) 3000
Comments:											
Concrete is sampled in accordance with 'ASTM C31, 'ASTM C1064, 'ASTM C231, 'ASTM C143	in accorda	nce with 'A	STM C3	1, ² ASTM	C1064, ³	ASTM C	231, ⁴ AS	TM C143			
Concrete molds conform to ASIM C470 requirements.	form to AS	IM C470 r	equireme	nts.							

Respectfully submitted

Project Engineer

Idres' Hawarry

(1) Bush Companies - Plantation Group, LLC - Mr. Ken Yerby

X Copies:

(1) James City County – Mr. Gerald E. Lewis (1) VDOT – Mr. Mark D. Yeatts

(1) George Nice & Sons, Inc. – Mr. Ray Nice, P.E. (1) AES Consulting Engineers – Mr. Richard Costello, P.E.

David L. Doran, E.I.T. Project Engineer

FOUNDATION ENGINEERING SCIENCE, INC. 11843 B Canon Boulevard
Newport News, Virginia 23606
Telephone (757) 873-4113 Fax (757) 873-4114

			CONCRET	E COMPR	ESSIVE	STRENG	TH TES	T REPORT			Page 2 of 2
Client.		The	Bush Compan	ies		•	Report	Date	April	24, 200	2
		4029	Ironbound Ro	oad, Suite 200)						
	Ì	Will	iamsburg, Virg	ginia 23188							
Project Name		Will	iamsburg Plan	tation, Section	n Five, Ear	then Dam	Project	No	1-9C	20.329	
Project Location	on	Jame	es City County	, Virginia			Set ID		I (A,E	3,C,D,E))
General Contra	actor	The	Bush Compan	ies			Mix ID		30-11	1	
Date Sampled		Apri	117, 2002				Design	Strength (psi)	3000		
Date Received		Apri	1 18, 2002				Admixt	ure			
<u> </u>				F	IELD TE	EST DATA	<u></u>				
Supplier		Cus	tom Concrete	Truck N	No.	169		Ticket No.		994485	5
Batch Time		3:30)	Sample	Time	4:10		Time Placed		4:30	
Concrete Tem	p ² (F)	85		Air Ten	np (F)	91		Weather		Sunny	
Slump ³ (in.)		4.0		Air Cor	ntent ⁴ (%)	4.0		Unit Wt.5 (pcf)	144	
Water Added	(gal)	N/A		Qty. Re	p. (yd³)	6		Sampled by ⁶		LS	
Placement Loc	cation	Co	ncrete Cradle S	Slab							
				LABOR	ATORY	TEST RE	SULTS				
SAMPLE	DIA	۷.	AREA	TEST	AGE	MAX.	UNIT	COMP.		REAK	TESTED
ID NUMBER	(in.)	(sq. in.)	DATE	(days)	LOAD (lbs.)	WT. (pcf)	STRENGTH (psi)		YPE	BY
12519	5.9	7	27.99	4-24-02	7	100,000	144	3570		D	BS
12526	5.9	5	27.81	4-24-02	7	90,000		3240		D	BS
12521			***	5-15-02	28			÷			
12522				5-15-02	28						
12523					SP					2.4**	<u> </u>
Break Type:		one,		ne & Split,		Cone & She		D-Shear,		Column	ar
Non-Complian	nce		Temp		Slump		Air		11	me	
Corrections M	ade		Temp	\$	Slump		Air		Ti	me	
Sample Defec	ts	Non	e	<u></u>	Curin	g Temp (F)	71	Flu	midity	(%)	100
Remarks					-						
Concrete is sa	ampled	l in ac	cordance wit	h ¹ ASTM C3	9, ² ASTM	C1064, 3AS	TM C143	, ⁴ ASTM C231	, ⁵ AST	M C138	,6ASTM C3
Concrete mol											

- Geotechnical Engineering [Drilling; Foundation, Retaining Wall & Pavement Design]
- Environmental Management [Phase | & ||, Asbestos and Lead Paint Sampling]
- Construction Materials Testing & Inspection [Quality Control & Quality Assuran
- Foundation & Pavement Problems Evaluations & Remediations
- Value Engineering During Design & Construction

Mr. J.P. Ottino III, V.P. Williamsburg Plantation, Inc. Berkeley South Building Executive Suite 121 3015 N. Ocean Boulevard Ft. Lauderdale, Florida 33308

Re: Seepage and Erosion of Dam Surface Slopes Report

Williamsburg Plantation - Section Five, Earthen Dam

James City County, Virginia FES Report No. 1-9C120.337

Dear Mr. Ottino:

Pursuant to the contractor's request, an experienced Professional Geotechnical Engineer with Foundation Engineering Science, Inc. (FES) visited the project site on May 3, 2002. The specific purpose of this site visit was to evaluate the side slopes of the cut areas within the recently re-constructed storm water management detention basin (SWMB) and earthen dam located within Williamsburg Plantation -Section Five in James City County, Virginia. The western portion of the cut slopes within the SWMB are three (3) horizontal to one (1) vertical [3H:1V].

A severe storm swept the area the night before on May 2, 2002, which yielded approximately two (2) inches of rain within a short period of time from approximately ten (10) pm to approximately four (4) am.

1.0 SITE OBSERVATIONS

The evaluated west side cut slopes of the SWMB appeared to have been soaked with this rainfall event including surface run off water from the western portion adjacent areas to the SWMB. Seepage was evident at two (2) locations from an approximate elevation of three (3) to four (4) feet above the pool existing elevation. The areas appearing to contain ground water seepage ranged approximately in length from ten (10) to thirty (30) feet. The seepage appeared to occur in water bearing or pervious layers of cohesionless soils.

The side slopes appeared to be intact with exception of the areas containing severe surface water run off. The surface erosion appeared to be slight [less than three (3) to six (6) inches in depth]. The majority of the existing ground surfaces above the western and north western portion of the SWMB are higher and drain towards the SWMB. A severe erosion occurred at the manhole located at the north end of the SWMB.

Seepage and Erosion of Dam Surface Slopes Report Williamsburg Plantation Section Five, Earthen Dam James City County, Virginia FES Report No. 1-9C120.337

The Existing Earthen Dam Evaluation Report, prepared by Foundation Engineering Science, Inc. (FES) for the subject project [FES Report No. 1-9C120.115, dated February 21, 2000] was reviewed. The soils encountered during our site observation appeared to generally be consistent with the soils described within the subsurface exploration study report. However, a subsurface exploration or a geotechnical engineering study was not requested or performed for the SWMB.

2.0 CONCLUSIONS AND RECOMMENDATIONS

Based on the results of our site observations, engineering judgment and extensive knowledge with similar soils, the following conclusions and recommendations are presented.

- 1. The cut side slopes located at the western portion of the SWMB appear to be stable with limited erosion. However, the slopes at the north and north western portion of the SWMB and specifically around the recently constructed manhole appear to have experienced severe erosion.
- 2. Seepage and surface run off will always occur at this SWMB due to its location and the type of soils encountered on this project site.
- 3. Seepage from the cut slopes cannot be prevented; however, the erosion capability of this seepage could become severe if not treated or stabilized. In this regard, FES recommends placement of a permanent stabilizing mat such as VDOT EC-3 type geotextile engineered product to prevent severe erosion from occurring due to seepage. Following completion of the seeding and placement of the geotextile engineered product, insure that grass is growing properly.
- 4. Surface erosion can be controlled by directing the surface run off during severe and extended rain fall events to specific areas that are not detrimental to the SWMB or the earthen dam. Surface run off should be directed from the western and north western portion of the SWMB by constructing surface ditches that are stabilized with VDOT type EC-3 geotextile engineered products.
- 5. The roadway portion of the SWMB appeared to experience some erosion. In this regard, FES recommends constructing drainage ditches along the western portion of this roadway and directed to a catch basin or over the over flow structure of the earthen dam.
- 6. FES should be present on site during installation of the geotextile engineered product to insure proper placement by the earthwork contractor.

Seepage and Erosion of Dam Surface Slopes Report Williamsburg Plantation Section Five, Earthen Dam James City County, Virginia FES Report No. 1-9C120.337

FES appreciates the opportunity to be of service to **Williamsburg Plantation**, **Inc.** on this important project and looks forward to its successful completion. If you have any questions in regards to our report, please do not hesitate to contact the undersigned.

Respectfully Submitted,

FOUNDATION ENGINEERING SCIENCE, INC.

Raja S. El-Awar, P.E. Principal Engineer

VA Reg. No. 26383

Attachments:

Figure 1 -Dam Sub-grade soils Evaluation Location Sketch

XCopies:

(1) Bush Companies – Plantation Group, LLC - Mr. Ken Yerby

(1) James City County – Mr. Gerald E. Lewis

(1) VDOT - Mr. Mark D. Yeatts

(1) George Nice & Sons, Inc. - Mr. Ray Nice, P.E.

(1) AES Consulting Engineers - Mr. Richard Costello, P.E.

C:\company\Oldfiles\1999\cmt\1-9C120.337

RECORD OF PHONE CONVERSATION

Call To:

Idres Hawarry- FES Inc.

Date:5/1/02

Call By:

Bob Lane

Re:

FES Reports Nos. 1-9C120.313 & .314-Williamsburg Plantation Section 5

Dam Reconstruction

I called Mr Hawarry to discuss the meaning of Item 3 of the section 2.0 CONCLUSIONS AND RECOMMENDATIONS on the above noted reports. He explained that this item was intended as a reminder to the contractor that if the exposed subgrade soils were exposed to moisture, (i.e. rain over night), they would need re-evaluation prior to backfilling. He assured me that FES was present for the reconstruction of the dam and that all unsuitable subgrade soils were removed and replaced by the contractor under FES supervision.

- Geotechnical Engineering [Drilling; Foundation, Retaining Wall & Pavement Design]
- Environmental Management [Phase | & | |, Asbestos and Lead Paint Sampling]
- Construction Materials Testing & Inspection [Quality Control & Quality Assurance]
- Foundation & Pavement Problems Evaluations & Remediations
- Value Engineering During Design & Construction

Mr. J.P. Ottino III, V.P. Williamsburg Plantation, Inc. **Berkeley South Building** Executive Suite 121 3015 N. Ocean Boulevard Ft. Lauderdale, Florida 33308

Re: Dam - Partial Subgrade Soils Evaluation Report

Williamsburg Plantation - Section Five, Earthen Dam

James City County, Virginia FES Report No. 1-9C120.313

Dear Mr. Ottino:

Pursuant to the contractor's request, an experienced Geotechnical Engineer with Foundation Engineering Science, Inc. (FES) visited the project site on April 16, 2002. The specific purpose of this site visit was to evaluate the cleared existing partial subgrade for the Earthen Dam located within Williamsburg Plantation - Section Five in James City County, Virginia.

1.0 SITE OBSERVATIONS

The partial existing subgrade areas of the Earthen Dam observed, appeared to have been recently cleared of existing Dam and "Topsoil" materials. The existing subgade elevation was reported by the grading contractor to be approximately forty four (44) to forty seven (47) feet, National Geodetic Vertical Datum (NGVD) of 1929. The contractor began undercutting the key to the design elevation of thirty nine (39) feet, (NGVD). The contractor undercut the key six (6) feet in width and five (5) feet in depth. The cleared subgrade soils encountered on site consisted of gray to brown, silty sand (SM) with excessive organic matter and wood fragments. The evaluated area is shown in the attached Figure 1.

The Existing Earthen Dam Evaluation Report, prepared by Foundation Engineering Science, Inc. (FES) for the subject project [FES Report No. 1-9C120.115, dated February 21, 2000] was reviewed. The soils encountered during our site observation appeared to generally be consistent with the soils described within the subsurface exploration study report.

Partial Dam Subgrade Soils Evaluation Report Williamsburg Plantation Section Five, Earthen Dam James City County, Virginia FES Report No. 1-9C120.313

2.0 CONCLUSIONS AND RECOMMENDATIONS

Based on the results of the undercutting procedure, our site observations and engineering judgment, the following conclusions and recommendations are presented.

1. Due to the type of soils encountered within the existing subgrade for the Earthen Dam, FES representative recommended excavating the unsuitable materials. Additionally, the contractor excavated the key area to elevation thirty nine (39) feet, (NGVD) and all unsuitable materials within the existing subgrade under FES representative supervision. The approximate volume of undercut is tabulated below:

LOCATION	LENGTH (ft)	WIDTH (ft)	DEPTH (Inches)	VOLUME (Cu. Yds.)
Area No. 1	50	45	36.0	250
			TOTAL =	250 Cubic Yards

- 2. The excavated soils within the existing Earthen Dam and the undercut soils are unsuitable to be utilized as backfill material within the Dam or anywhere else due to containing excessive organic matter and wood fragments.
- 3. The subgrade soils are moisture sensitive. In this regard, following extended rainfall events or severe rainfall, we recommend the existing subgrade soils be re-evaluated by an experienced Professional Engineer or his representative to insure that the subgrade soils are stable and still capable of supporting the proposed fill and loads.

FES appreciates the opportunity to be of service to **Williamsburg Plantation**, **Inc.** on this important project and looks forward to its successful completion. If you have any questions in regards to our report, please do not hesitate to contact the undersigned.

Respectfully Submitted,

FOUNDATION ENGINEERING SCIENCE, INC.

Adres Hawarry

Project Engineer

Raja S. Elawar, P.E.

Principal Engineer VA Reg. No. 26383

Attachments:

Figure 1 -Dam Sub-grade soils Evaluation Location Sketch

XCopies:

(1) Bush Companies-Plantation Group, LLC - Mr. Ken Yerby

(1) James City County - Mr. Gerald E. Lewis

(1) VDOT - Mr. Mark D. Yeatts

(1) George Nice & Sons, Inc. – Mr. Ray Nice, P.E.

C:\company\OLD Files\1999\cmt\1-9C120.313

DARRYL - FYI

FOUNDATION ENGINEERING SCIENCE, INC.

- Geotechnical Engineering [Drilling; Foundation, Retaining Wall & Pavement Design]
- Environmental Management [Phase | & | 1, Asbestos and Lead Paint Sampling]
- Construction Materials Testing & Inspection [Quality Control & Quality Assurance]
- Foundation & Pavement Problems Evaluations & Remediations
- Value Engineering During Design & Construction

April 19, 2001

Mr. J.P. Ottino III, V.P. Williamsburg Plantation, Inc. **Berkeley South Building** Executive Suite 121 3015 N. Ocean Boulevard Ft. Lauderdale, Florida 33308

Re: Dam - Partial Subgrade Soils Evaluation Report
Williamsburg Plantation, Section Five - Earthen Dam

James City County, Virginia FES Report No. 1-9C120.314

Dear Mr. Ottino:

Pursuant to the contractor's request, an experienced Geotechnical Engineer with Foundation Engineering Science, Inc. (FES) visited the project site on April 17, 2002. The specific purpose of this site visit was to evaluate the cleared existing partial subgrade for the Earthen Dam located within Williamsburg Plantation - Section Five in James City County, Virginia.

1.0 SITE OBSERVATIONS

The partial existing subgrade areas of the Earthen Dam area observed, appeared to have been recently cleared of existing Dam and "Topsoil" materials. The existing subgade elevation was reported by the grading contractor to be approximately forty four (44) to forty seven (47) feet, National Geodetic Vertical Datum (NGVD) of 1929. The contractor began undercutting the key to the design elevation of thirty nine (39) feet, (NGVD). The contractor undercut the key six (6) feet in width and five (5) feet in depth. The cleared subgrade soils encountered on site consisted of gray to brown, silty sand (SM) with wood fragments and organic matter. The evaluated area is shown in the attached Figure 1.

The existing Earthen Dam Evaluation Report, prepared by Foundation Engineering Science, Inc. (FES) for the subject project [FES Report No. 1-9C120.115, dated February 21, 2000] was reviewed. The soils encountered during our site observation appeared to generally be consistent with the soils described within the subsurface exploration study report.

Hrindipal Engineer

A Reg. No. 26383

Dam Partial Subgrade Soils Evaluation Report
Williamsburg Plantation -Section Five, Earthen Dam
James City County, Virginia
FES Report No. 1-9C120.314

2.0 CONCLUSIONS AND RECOMMENDATIONS

Based on the results of the undercutting procedure, our site observations and engineering judgment, the following conclusions and recommendations are presented.

1. Due to the type of soils encountered within the existing subgrade for the Earthen Dam, FES representative recommended undercutting the unsuitable materials. Additionally, the contractor excavated the key area to elevation thirty nine (39) feet (NGVD) and all unsuitable materials within the existing subgrade under FES representative supervision. The approximate volume of undercut is tabulated below:

LOCATION	LENGTH (ft)	WIDTH (ft)	DEPTH (Inches)	VOLUME (Cu. Yds.)
Area No. 1	28	45	36.0	140
			TOTAL = 1	40 Cubic Yards

- 2. The excavated soils within the existing Earthen Dam and the undercut soils are unsuitable to be utilized as a backfill material within the Dam or anywhere else due to containing excessive organic matter and wood fragments.
- 3. The subgrade soils are moisture sensitive. In this regard, following extended rainfall events or severe rainfall, we recommend the existing subgrade soils be re-evaluated by an experienced Professional Engineer or his representative to insure that the subgrade soils are stable and still capable of supporting the proposed fill and loads.

FES appreciates the opportunity to be of service to **Williamsburg Plantation**, **Inc.** on this important project and looks forward to its successful completion. If you have any questions in regards to our report, please do not hesitate to contact the undersigned.

Respectfully Submitted,

FOUNDATION ENGINEERING SCIENCE, INC.

Idres Hawarry

Attachments:

Project Engineer

Figure 1 -Dam Sub-grade soils Evaluation Location Sketch

XCopies: (1) Bush Companies-Plantation Group, LLC - Mr. Ken Yerby

(1) James City County - Mr. Gerald E. Lewis

(1) VDOT - Mr. Mark D. Yeatts

(1) George Nice & Sons, Inc. - Mr. Ray Nice, P.E.

C:\company\OLD Files\1999\cmt\1-9C120.314

-EXISTING SUBGRADE EVALUATION -UNDERCUT AREA

			EVALUTION LOCATION SKETCH
April 17, 2002	N/A	1-9C120.314	EARTHEN DAMEXISTING SUBGRADE
DATE:	SCALE:	FES REPORT NO.	FIGURE – 1
EMAIL:	RELAWAR@FI	ESVA.COM	
	RT NEWS, VIRO 7-873-4113 FAX		JAMES CITY COUNTY, VIRGINIA
•	B CANON BOU		FIVE - EARTHEN DAM
GEOTECHNICAL, ENVIR	ONMENTAL & CO	ONSTRUCTION INSPECTION	WILLIAMSBURG PLANTATION, SECTION
FOUNDATION	ENGINEERIN	IG SCIENCE, INC.	CONSTRUCTION INSPECTION SERVICES

- Geotechnical Engineering [Drilling; Foundation, Retaining Wall & Pavement Design]
- Environmental Management [Phase | & | |, Asbestos and Lead Paint Sampling]
- Construction Materials Testing & Inspection [Quality Control & Quality Assertance
- Foundation & Pavement Problems Evaluations & Remediations
- Value Engineering During Design & Construction

May 3, 2002

Mr. J.P. Ottino III, V.P. Williamsburg Plantation, Inc. **Berkeley South Building** Executive Suite 121 3015 N. Ocean Boulevard Ft. Lauderdale, Florida 33308

Re: Emergency Spillway Subgrade Soils Evaluation Report

Williamsburg Plantation, Section Five - Earthen Dam

James City County, Virginia FES Report No. 1-9C120.335

Dear Mr. Ottino:

Pursuant to the contractor's request, an experienced Geotechnical Engineer with Foundation Engineering Science, Inc. (FES) visited the project site on April 23, 2002. The specific purpose of this site visit was to evaluate the subgrade materials for the Emergency Spillway at the Earthen Dam located within Williamsburg Plantation - Section Five in James City County, Virginia.

1.0 SITE OBSERVATION

The Emergency Spillway subgrade observed appeared to have been cleared from the "Topsoil" materials and undercut twenty (20) feet in width and to the design elevation of fifty four (54) feet, National Geodetic Vertical Datum (NGVD) of 1929. The subgrade soils encountered on site consisted of gray to brown, silty sand (SM). The evaluated area is shown in the attached Figure 1.

The existing Earthen Dam Evaluation Report, prepared by Foundation Engineering Science, Inc. (FES) for the subject project [FES Report No. 1-9C120.115, dated February 21, 2000] was reviewed. The soils encountered during our site observation appeared to generally be consistent with the soils described within the subsurface exploration study report.

Principal Engineer VA Reg. No. 26383

Emergency Spillway Subgrade Soils Evaluation Report Williamsburg Plantation -Section Five, Earthen Dam James City County, Virginia FES Report No. 1-9C120.335

2.0 CONCLUSIONS AND RECOMMENDATIONS

Based on the results of the undercutting procedure, our site observations and engineering judgment, the following conclusions and recommendations are presented.

- 1. On-site observation indicated that the emergency spillway subgrade is ready for placement of the filter fabric liner.
- 2. The subgrade soils are moisture sensitive. In this regard, following extended rainfall events or severe rainfall, we recommend the existing subgrade soils be re-evaluated by an experienced Professional Engineer or his representative to insure that the subgrade soils are stable and still capable of supporting the proposed fill and loads.

FES appreciates the opportunity to be of service to Williamsburg Plantation, Inc. on this important project and looks forward to its successful completion. If you have any questions in regards to our report, please do not hesitate to contact the undersigned.

Respectfully Submitted,

FOUNDATION ENGINEERING SCIENCE, INC.

Project Engineer

Attachments: Figure 1 -Dam Sub-grade soils Evaluation Location Sketch

XCopies: (1) Bush Companies-Plantation Group, LLC - Mr. Ken Yerby

(1) James City County - Mr. Gerald E. Lewis

(1) VDOT - Mr. Mark D. Yeatts

(1) George Nice &Sons, Inc. - Mr. Ray Nice, P.E.

(1) AES Consulting Engineers - Mr. Richard Costello, P.E.

C:\company\OLD Files\1999\cmt\1-9C120.35

- Geotechnical Engineering [Drilling; Foundation, Retaining Wall & Parement Des
- Environmental Management [Phase | & ||, Asbestos and Lead Paint amplique]
- Construction Materials Testing & Inspection [Quality Control & Quality Control & Qua
- Foundation & Pavement Problems Evaluations & Remediation
- Value Engineering During Design & Construction

April 30, 2002

Project Engineer

Mr. J.P. Ottino, III, V.P. Williamsburg Plantation, Inc. Berkley South Building **Executive Suite 121** 3015 N. Ocean Boulevard

Fort Lauderdale, Florida 33308

Re:

Field Compaction Density Report

Williamsburg Plantation, Section Five, Earthen Dam

James City County, Virginia FES Report No. 1-9C120.323

Dear Mr. Ottino:

Pursuant to the Contractor's request, a Foundation Engineering Science, Inc. (FES) representative visited the project site on April 19, 2002. The specific purpose of this visit was to perform compaction density testing on the on-site material placed within the earthen dam. These tests were performed in general accordance with the American Society for Testing and Materials (ASTM) Test Designation D-2922, titled "Density of Soil and Soil-Aggregate in Place by Nuclear Methods (Shallow Depth)".

FES appreciates the opportunity to be of service to Williamsburg Plantation, Inc. on this important project and looks forward to its successful completion. Should you have any questions regarding this report, please do not hesitate to contact the undersigned.

Respectfully submitted,

FOUNDATION ENGINEERING SCIENCE, INC.

Project Engineer

Field Compaction Density Report

Field Compaction Density Location Sketch

XCopies:

Attachments:

(1) Bush Companies-Plantation Group, LLC - Mr. Ken Yerby

(1) James City County - Mr. Gerald E. Lewis

(1) VDOT - Mr. Mark D. Yeatts

(1) George Nice & Sons, Inc. – Mr. Ray Nice, P.E.

(1) AES Consulting Engineers – Mr. Richard Costello, P.E.

11843 B Canon Boulevard Newport News, Virginia 23606

Telephone: (757) 873-4113 Fax: (757) 873-4114

			FIE	LD CC	MPA	CTION	DENSIT	Y REPO	RT ¹	.,,			Pag	e 1 of
Project N	lame	Williamsb						Date		April 19, 2	002			
Project N	lo.	1-9C120.	323					General Contractor		The Bush (Compan	iies		
Client		Williamsh Berkley S Executive 3015 N. C Fort Laud	South Bu Suite 1 Ocean B	ilding 21 oulevard				Earth Contractor		George Ni	ce & So	ns, I	nc.	
Project L	ocation	James Cit	· · · · · · · · · · · · · · · · · · ·					Weather		Sunny				
Gauge #	26788	Mode		3430		sity Std. C	ct. 30	11 Moi	sture St	d. Ct.	650	FI	ES REP.:	LS
Proctor	Dry Density ² (pcf)	Opt. Moist. (%)	Passi #20 (%	0^3	1	-	i	Classificatio	on ⁴	S	ource	<u> </u>	Comp Requi	rement
43	117.1	14.0	47.	8 R	eddish t	orown clay	yey SAND	(SC)		On-sit	e Borro	w	Moderate	effort
TEST NO.	DEPTH (inches)	1	VATION feet)	1 P	ROC. NO.	D.D. (PCF)	MOIST (%)	W.D. (PCF)	% COM	P PASS	FA	IL	REM	ARKS
1	12	4	46.5		43	111.3	18.2	131.4	95.0	X				
2	12	-	47.0		43	111.7	17.3	131.0	95.4	X				
3	6		47.0	<u> </u>	43	111.4	17.8	131.2	95.1	X				
4	12	4	48.0		43	112.6	17.4	132.2	96.2	2 X				
5	12		48.0		43	114.6	15.5	132.3	97.9) X				-
6	12	1	49.0		43	115.6	14.4	132.2	98.7	X				
TEST N	O.				·		TEST LO	CATION						
1	Site N	o. 1, See a	ttached	figure										
2	Site N	o. 2, See a	ttached	figure										
3	Site N	o. 1, See a	ttached	figure										
4	Site N	o. 2, See a	ttached	figure										
5	Site N	o. 1, See a	ttached	figure										
6	Site N	o. 2, See a	ttached	figure										
SPEC. R	EQUIREME	NTS	Uti	ity Trend	:h	Sidev	valk	Structure		Roadwa	y/Parkii	ng	11,0	neral am)
COMPA	CTION (%)				·····	<u> </u>							9	5.0
MOISTU	JRE (%)		,										O.M.	<u>+</u> 20%
Commen	nts	1				.								
	tion density	testing w	as nerfo	rmed in	genera	Laccorda	nce with ¹ A	STM D292	2, ² AS	rm D698 (Metho	1 A).	³ ASTM D	1140,

11843 B Canon Boulevard

Newport News, Virginia 23606 Telephone: (757) 873-4113 Fax: (757) 873-4114

								Y REPO					Pag	e 2 o
Project N	ame	Williamsł	ourg P	lantation	ı, Section l	Five, Eart	hen Dam	Date		oril 19, 20				
Project No	0.	`1-9C120.:	323					General Contractor		e Bush C	ompanie	es		
Client		Williamsł	ourg P	lantation	ı, Inc.			Earth	1	eorge Nice	& Son	s, In	c.	
		Berkley S Executive 3015 N. O	Suite	121				Contractor						
		Fort Laud												
Project Lo	ocation	James Cit	y Cou	inty, Vir	ginia			Weather	Su	nny	"			
Gauge #	26788	Mode	-	3430	<u> </u>	sity Std. C	t. 30	11 Mois	sture Std	. Ct.	650	FI	ES REP.:	LS
Proctor	Dry Density ² (pcf)	Opt. Moist.	#2	ssing 200 ³	Ma	iterial Des	cription &	Classificatio	n ⁴	S	ource	•	Comp Requir	
- 12		(%)		<u>%)</u>	T. 11: 1 1		GAND	(9.0)		0	- Domes		Moderate	offort
43	117.1	14.0		7.8			yey SAND	`	%	PASS	e Borrov FAI		REMA	
TEST NO.	DEPTH (inches)		VATION (Page 1)	ON	PROC. NO.	D.D. (PCF)	MOIST (%)	W.D. (PCF)	COMF		FAI	L	KEWIA	ANNO
7	12		49.0		43	111.6	16.4	129.9	95.3	X				
8	12		50.0		43	111.3	16.8	130.0	95.0	X				
9	12	1	50.0		43	118.2	14.8	135.7	100.9	X				
10	12		51.0		43	115.7	14.3	132.2	98.8	X				
11	12	:	51.0		43	114.5	15.9	132.7	97.7	X				
12	12		52.0		43	115.7	14.6	132.5	98.8	X				
TEST NO	Э.						TEST LC	CATION						: .
7	Site N	o. 1, See a	ttache	d figure										
8	Site N	o. 2, See a	ttache	d figure										
9	Site N	o. 1, See a	ttache	d figure										
10	Site N	o. 1, See a	ttache	d figure										
11	Site N	o. 2, See a	ttache	d figure										
12	Site N	o. 1, See a												
SPEC. RI	EQUIREME	ENTS	U	Itility Tr	ench	Sidev	valk	Structure		Roadwa	y/Parkin	ıg		neral am)
COMPAG	CTION (%)	<u> </u>				1 2 2 2 2					-			5.0
MOISTU	· · · · · · · · · · · · · · · · · · ·												O.M.	± 20%
Commen	<u> </u>					_i	<u></u>						-	
	tion density								2 . 000	17 D (00 (<u> </u>	3 A CTM D1	1140

11843 B Canon Boulevard

Newport News, Virginia 23606 Telephone: (757) 873-4113 Fax: (757) 873-4114

			FIELD	COMPA	CTION	DENS	SITY	RE	PORT	1				Page	e 3 of 3
Project N	Name	Williams	burg Plantati	on, Section	Five, Ear	then Dai	m I	Date		Apr	il 19, 20	02			
Project N	No.	1-9C120	.323					Genera Contra		The	Bush C	ompanio	es		
Client		Berkley S Executive 3015 N.	burg Plantati South Buildir e Suite 121 Ocean Boule derdale, Flori	ng vard				Earth Contra	ictor	Geo	rge Nice	e & Son	s, In	c.	
Project L	ocation	James Ci	ty County, V	irginia			7	Weath	er	Sun	ny				
Gauge #	26788	Mode	1# 3430) Den	sity Std. (Ct.	3011	N	Moisture	Std. (Ct.	650	FF	ES REP.:	LS
Proctor	Dry Density ² (pcf)	Opt. Moist. (%)	Passing #200 ³ (%)	Ma	aterial Des	scription	& Cl	assific	cation ⁴	:	S	ource		Compa Require	
43	117.1	14.0	47.8	Reddish	brown cla	yey SAN	VD (S	C)			On-sit	e Borro	w	Moderate e	effort
TEST NO.	DEPTH (inches)	1	VATION (feet)	PROC. NO.	D.D. (PCF)	MOIS (%)		W.D (PCF	1	% OMP	PASS	FAI	L	REMA	RKS
13	12		52.0	43	114.6	15.3	3	132.	2 9	7.9	X				
14	12		53.0	43	116.0	17.0	, T	135.	6 9	8.7	X				
15	12		53.0	43	115.2	16.2	2	133.	9 9	8.1	X				
16	12		54.0	43	116.1	15.6	5	134.	2 9	9.2	X				
17	12		54.0	43	116.4	15.4	F	134.	3 9	9.4	X				=-
TEST N						TEST	LOC	ATIO	N		. V			14 to 17 to	, Sala
13		· · · · · · · · · · · · · · · · · · ·	ttached figur											· Sant - Www	
14			ttached figur												
15			ttached figur									40			
16			ttached figur												
SPEC. R	Site N EQUIREMI		ttached figur Utility T		Sidev	valk	1	Structi	ure	F	Roadway	//Parkin	g	Gene (Da	
COMPA	CTION (%)		<u> </u>	<u> </u>						ist	<u> </u>	** Nettu		95.	
MOISTU	JRE (%)				1									O.M. <u>+</u>	20%
Commen	its				, I	I								1	·
Compac ⁴ ASTM I	tion density D2488 (Visu	testing wa	ns performed l Procedure)	l in general	accorda	nce with	¹ AST	Г М D 2	2922, ² A	STM	D698 (I	Method	A),	³ ASTM D11	40,

GEOTECHNICAL, ENVIRONMENTAL & CONSTRUCTION INSPECTION

11843-B CANON BOULEVARD NEWPORT NEWS, VIRGINIA 23606 PHONE: 757-873-4113 FAX: 757-873-4114

EMAIL: RELAWAR@FESVA.COM

DATE: **April 19, 2002**

SCALE: N/A FES REPORT NO.

1-9C120.323

CONSTRUCTION INSPECTION SERVICES

WILLIAMSBURG PLANTATION, SECTION FIVE - EARTHEN DAM

JAMES CITY COUNTY, VIRGINIA

FIGURE – 1

FIELD DENSITY COMPACTION LOCATION SKETCH

- · Geotechnical Engineering [Drilling; Foundation, Retaining Wall Pavement Desig
- Environmental Management [Phase | & |], Asbestos and Lead Paint Sampling 100
- Construction Materials Testing & Inspection [Quality Control Quality Assurance
- Foundation & Pavement Problems Evaluations & Remediations
- Value Engineering During Design & Construction

Principal Engineer

VA Reg. No. 26383

Mr. J.P. Ottino, III, V.P. Williamsburg Plantation, Inc. Berkley South Building Executive Suite 121 3015 N. Ocean Boulevard Fort Lauderdale, Florida 33308

Re:

Field Compaction Density Report

Williamsburg Plantation, Section Five, Earthen Dam

James City County, Virginia FES Report No. 1-9C120.318

Dear Mr. Ottino:

Pursuant to the Contractor's request, a Foundation Engineering Science, Inc. (FES) representative visited the project site on April 17, 2002. The specific purpose of this visit was to perform compaction density testing on the on-site material placed within the earthen dam area. These tests were performed in general accordance with the American Society for Testing and Materials (ASTM) Test Designation D-2922, titled "Density of Soil and Soil-Aggregate in Place by Nuclear Methods (Shallow Depth)".

FES appreciates the opportunity to be of service to Williamsburg Plantation, Inc. on this important project and looks forward to its successful completion. Should you have any questions regarding this report, please do not hesitate to contact the undersigned.

Respectfully submitted,

FOUNDATION ENGINEERING SCIENCE, INC.

Idres Hawarry
Project Engineer

Field Compaction Density Report

Field Compaction Density Location Sketch

XCopies:

Attachments:

(1) Bush Companies-Plantation Group, LLC - Mr. Ken Yerby

(1) James City County - Mr. Gerald E. Lewis

(1) VDOT – Mr. Mark D. Yeatts

(1) George Nice & Sons, Inc. - Mr. Ray Nice, P.E.

c:\company\oldfiles\1999\cmt\1-9C120.318

11843 B Canon Boulevard Newport News, Virginia 23606

Telephone: (757) 873-4113 Fax: (757) 873-4114

							Y REPO	K I	117 200			Page	1 01
Project Na	me		ourg Plantatio	n, Section I	Five, Eart	hen Dam	Date		il 17, 200				
Project No		1-9C120.3	318				G. Contractor		Bush Co				
Client		Williamsb	ourg Plantatio	n, Inc.			Earth	1	orge Nice	& Sons	, Inc.		
			outh Building	<u>,</u>			Contractor						
			Suite 121 Ocean Boulev	~d									
			lerdale, Floric										
Project Lo	cation		y County, Vi				Weather	Sur	ıny				
Gauge #	26788	Model		-	sity Std. C	ct. 33:	54 Mois	sture Std.	Ct.	658	FES R	EP.:	LS
Proctor	Dry	Opt.	Passing				Classificatio	on ⁴	So	ource		Compac	ction
100101	Density ²	Moist.	$#200^{3}$						ļ			Require	ment
	(pcf)	(%)	(%)										
43	117.1	14.0	47.8	Reddish l	orown cla	yey SAND	(SC)		On-site	Borrow	v M	oderate e	ffort
TEST	DEPTH	ELE	VATION	PROC.	D.D.	MOIST	W.D.	%	PASS	FAII	L	REMA]	RKS
NO.	(inches)		feet)	NO.	(PCF)	(%)	(PCF)	COMP		į			
1	12		46.0	43	118.6	14.8	136.1	101.2	X	<u> </u>			
						14.8	137.1	102.0	X				
2	12		55.0	43	119.4					<u> </u>			
3	12		47.0	43	113.8	15.8	131.8	97.2	X	ļ			
4	12		56.0	43	114.7	14.9	131.8	98.0	X	<u> </u>			
5	12		42.0	43	115.0	13.9	131.9	98.2	X	ļ			
6	12		43.0	43	117.0	14.0	132.8	99.9	X				
TEST NO). [TEST LO	CATION	es e e			<u> </u>		
1	Site N	o. 1, See a	ttached figur	2									
2	Site N	o. 2, See a	ttached figur	•									
3	Site N	o. 1, See a	ttached figur	2									
4			ttached figur										
5			ttached figur										
6			ittached figur								. 1		
SPEC. RI	EQUIREME	ENTS	Utility T	rench	Sidev	valk	Structure		Roadway	y/Parkin	g	Gene	
ur e												(Da	
COMPAC	CTION (%)											95.	
MOISTU	RE (%)											O.M. <u>+</u>	20%
Comment	s			-									
Compact	ion density	tostina w	as performed	l in genera	l accorda	nce with 14	STM D292	2, ² ASTN	1 D698 (Method	A), ³ A	STM D1	140,

11843 B Canon Boulevard Newport News, Virginia 23606

Telephone: (757) 873-4113 Fax: (757) 873-4114

			\mathbf{F}	ELD (COMPA	CTION	DENS	SIT	Y REPO	RT'					Pag	e 2 of
Project N	ame	Williamsl	burg P	lantation	ı, Section I	Five, Eart	hen Dai	n	Date	1	Apri	17, 200	02			
Project N	0.	1-9C120.	318	•					G. Contractor	1	The 1	Bush Co	mpånie	es		
Client		Williamsl Berkley S Executive 3015 N. C Fort Lauce	South : Suite Ocean	Building 2121 Bouleva	urd				Earth Contractor		Geor	ge Nice	& Son	s, In	ic.	
Project L	ocation	James Cit							Weather	+	Sunr	ıv				
Gauge #	26788	Mode		3430		sity Std. C	`t	335		sture S			658	F	ES REP.:	LS
Proctor	Dry Density ² (pcf)	Opt. Moist. (%)	Pa	ssing 200 ³ (%)	L		1		Classificatio				ource	1		action rement
43	117.1	14.0		7.8	Reddish l	orown clay	yey SAl	ND (SC)			On-site	Borro	W	Moderate	effort
TEST NO.	DEPTH (inches)	1	VATI (feet)	ON	PROC. NO.	D.D. (PCF)	MOIS (%)		W.D. (PCF)	% CON		PASS	FA	IL	REM	ARKS
7	12		40.5		43	118.0	14.9	9	135.6	100	.7	X				
8	12		41.5		43	119.6	15.0	0	137.5	102	.1	X				
9	12	<u> </u>	42.5		43	115.0	16.2	2	133.6	98.	2	X				
10	12		43.5		43	120.3	15.	3	138.7	102	.7	X				
11	12		44.5		43	116.6	15.	3	134.5	99.	6	X				
12	6		45.0		43	115.6	15.	8	133.8	98.	.7	X				
TEST N	O.	dring.		tayata un uni		: -	TEST	LO	CATION							
7	Site N	lo. 4, See a	attach	ed figure												
8		lo. 4, See a												_		
9	Site N	lo. 4, See a	attach	ed figure	;					,						
10		lo. 4, See a										· ·····			w -	
11		lo. 4, See a														
12		lo. 4, See a							an		r					
SPEC. R	EQUIREMI	ENTS	Ţ	Jtility T	rench	Sidey	valk		Structure	:	F	Roadwa	y/Parkii	ng	(D	neral am)
COMPA	CTION (%)							- 11	***						9	5.0
MOIST	JRE (%)														O.M.	<u>+</u> 20%
Comme	nts					d										
	ction density	tostina	oc no	rformed	in genera	Laccordo	nce wit	h ¹ A	STM D202	2 ² A S	TM	D698 (Method	d A)	, ³ ASTM D	1140.

- Geotechnical Engineering [Drilling; Foundation, Retaining Wall & Pavement Design]
- Environmental Management [Phase | & | |, Asbestos and Lead Paint Sampling]
- Construction Materials Testing & Inspection [Quality Control & Quality Assurance]
- Foundation & Pavement Problems Evaluations & Remediations
- Value Engineering During Design & Construction

April 24, 2002

Principal Engineer

Reg. No. 26383

Mr. J.P. Ottino, III, V.P. Williamsburg Plantation, Inc. Berkley South Building Executive Suite 121 3015 N. Ocean Boulevard Fort Lauderdale, Florida 33308

Re:

Field Compaction Density Report

Williamsburg Plantation, Section Five, Earthen Dam

James City County, Virginia FES Report No. 1-9C120.316

Dear Mr. Ottino:

Pursuant to the Contractor's request, a Foundation Engineering Science, Inc. (FES) representative visited the project site on April 16, 2002. The specific purpose of this visit was to perform compaction density testing on the on-site material placed within the earthen dam. These tests were performed in general accordance with the American Society for Testing and Materials (ASTM) Test Designation D-2922, titled "Density of Soil and Soil-Aggregate in Place by Nuclear Methods (Shallow Depth)".

FES appreciates the opportunity to be of service to Williamsburg Plantation, Inc. on this important project and looks forward to its successful completion. Should you have any questions regarding this report, please do not hesitate to contact the undersigned.

Respectfully submitted,

FOUNDATION ENGINEERING SCIENCE, INC.

Project Engineer

Attachments:

Field Compaction Density Report

Field Compaction Density Location Sketch

XCopies:

(1) Bush Companies-Plantation Group, LLC - Mr. Ken Yerby

(1) James City County – Mr. Gerald E. Lewis

(1) VDOT - Mr. Mark D. Yeatts

(1) George Nice & Sons, Inc. - Mr. Ray Nice, P.E.

11843 B Canon Boulevard Newport News, Virginia 23606

Telephone: (757) 873-4113 Fax: (757) 873-4114

			FIELD (COMPA	CTION	DEN	SITY	Y REPO	RT¹				Pag	e 1 of
Project N	ame	Williamsb Dam	urg Plantatio				Date			April 1	6, 2002	2		
Project N	o.	1-9C120.3	316				Gene	eral Contr	actor	The B	ush Con	npan	ies	
Client		Williamsb	urg Plantatio	n, Inc.			Eart	h Contract	or	Georg	e Nice &	& So	ns, Inc.	
			outh Building											
		Executive		_										
	J.		ocean Bouleva erdale, Florid											
Project L	ocation		y County, Vi				Wea	ther		Sunny				
Gauge #	26788	Model			sity Std. C	`t	2920		sture Std.	<u> </u>	629	FE	S REP.:	LS
Proctor	Dry	Opt.	Passing			1	l	lassification			ource		Comp	
Proctor	Dry Density ²	Moist.	#200 ³	1416	neriai Des	criptio		lassificati	<i>,</i> 11		0		Requir	
	(pcf)	(%)	(%)											
43	117.1	14.0	47.8	Reddish l	orown clay	vev SA	ND (S	SC)		On-sit	е Вогго	w	Moderate	effort
TEST	DEPTH		ATION	PROC.	D.D.	MOI		W.D.	%	PASS	FA		REMA	ARKS
NO.	(inches)	1	feet)	NO.	(PCF)	(%		(PCF)	COMP					
1	12		15.0	43	113.8	14.	9	130.7	97.1	X				
2	12	1	11.0	43	114.1	14.	.8	131.0	97.5	X				
3	12		16.0	43	111.3	16.	.4	129.6	95.0	Х				
4	12	4	12.0	43	116.9	15.	.4	135.0	99.9	X				
5	12	4	4 7.0	43	116.4	15.	.3	134.2	99.4	X				
6	12	4	43.0	43	112.7	16.	.0	130.8	96.3	X				
7	12	50.0 43 118.4 15.6 136.8 101.1 X												
8	12	4	43.5	43	113.7	16		132.9	97.1		X			1 (100)
TEST N	O					TES	T LO	CATION						
1	Site N	o. 1, See a	ttached figure)										
2			ttached figure							4				
3	Site N	o. 1, See a	ttached figure	·										
4			ttached figure											
5			ttached figure											
6			ttached figure											
7			ttached figure											
8			ttached figure											
SPEC. R	EQUIREME	ENTS	Utility T	rench	Sidev	walk		Structure	;	Roadw	ay/Park	ıng 		eneral Dam)
COMPA	CTION (%)													95.0
MOIST	JRE (%)												O.M	$1. \pm 20^{\circ}$
Comme	nts													
Compa	tion density	testing wa	s performed	in genera	l accorda	nce wit	th ¹ AS	STM D29	22, ² ASTN	1 D698 (Metho	d A),	³ ASTM D	1140,

11843 B Canon Boulevard Newport News, Virginia 23606

Telephone: (757) 873-4113 Fax: (757) 873-4114

				FJ	ELD	COMPA	CTION	DENS	SIT	Y REPO	RT^1				Page	2 of
Project N	ame	e	Williams' Dam			n, Section			Date		Aţ	oril 16, 20	02			
Project N	o.		1-9C120.	316					Gen Con	eral tractor	Th	e Bush C	ompanie	es .		
Client			Williams	burg P	lantatio	n, Inc.	*		Eart	h Contract	or Ge	eorge Nice	e & Sons	s, Inc		
			Berkley S Executive 3015 N. G Fort Lauce	South I e Suite Ocean	Building 121 Bouleva	g ard								· · · · ·		
Project L	oca	tion	James Ci	ty Cou	inty, Vii	ginia			Wea	ather	Su	nny				
Gauge #		26788	Mode	1#	3430	Den	sity Std. C	Ct.	292	0 Moi	sture Std	. Ct.	629	FES	S REP.:	LS
Proctor	L	Ory Density ² pcf)	Opt. Moist. (%)	#2	ssing 200 ³ %)	Ma	iterial Des	cription	1 & C	Classification	on ⁴	S	ource		Compac Requirer	
43	\dagger	117.1	14.0	4	7.8	Reddish l	orown clay	yey SAl	ND (S	SC)		On-sit	e Borrov	N	Moderate ef	fort
TEST NO.		DEPTH inches)		VATION (feet)	ON	PROC. NO.	D.D. (PCF)	MOIS (%)		W.D. (PCF)	% COMF	PASS	FAI	L	REMAR	KS
9		12		52.0		43	116.0	15.3	8	134.3	99.1	X				
10		12		45.0		43	112.2	16.	1	130.2	95.8	X				
11		12		53.0		43	117.7	15.	6	136.0	100.5	X				
12		12		46.0 43 113.8				15.	5	131.4	97.1	X				
13		12		54.0		43	115.3	16.	7	134.6	98.5	X				
TEST N	O.							TEST	LO	CATION						
9		Site No	o. 5, See a	attache	d figure	,									· · · · · · · · · · · · · · · · · · ·	
10		Site No	o. 4, See a	attache	d figure	,					.,,,,,		- 			
11			o. 5, See a													
12			o. 4, See a													
13			o. 5, See a						·							4
SPEC. R	EQI	UIREME	NTS	U	Itility Ti	rench	Sidev	valk		Structure		Roadw	ay/Parki	ng	Gene (Da	m)
COMPA	CTI	ION (%)		with.						.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					95.	.0
MOISTU	ЛRE	E (%)													O.M. <u>+</u>	_ 20%
Commen																
		n density	testing w	as per	formed	in genera	accorda	nce witl	h ¹AS	STM D292	22, ² AST	M D698 (Method	A), ³	3ASTM D11	40,

GEOTECHNICAL, ENVIRONMENTAL & CONSTRUCTION INSPECTION

11843-B CANON BOULEVARD NEWPORT NEWS, VIRGINIA 23606 PHONE: 757-873-4113 FAX: 757-873-4114

EMAIL: RELAWAR@FESVA.COM

DATE: **April 16, 2002**

SCALE: N/A FES REPORT NO.

1-9C120.316

CONSTRUCTION INSPECTION SERVICES

WILLIAMSBURG PLANTATION, SECTION FIVE - EARTHEN DAM

JAMES CITY COUNTY, VIRGINIA

FIGURE – 1
FIELD DENSITY COMPACTION
LOCATION SKETCH

- Geotechnical Engineering [Drilling; Foundation, Retaining Wall & Pavement Design]
- Environmental Management [Phase | & | |, Asbestos and Lead Paint Sampling]
- Construction Materials Testing & Inspection [Quality Control & Quality Assurance]
- Foundation & Pavement Problems Evaluations & Remediations
- Value Engineering During Design & Construction

Mr. J.P. Ottino III, V.P.

Williamsburg Plantation, Inc.
Berkeley South Building
Executive Suite 121
3015 N. Ocean Boulevard

Ft. Lauderdale, Florida 33308

April 18, 2001

Re: Existing Dam Soils Evaluation Report

Williamsburg Plantation, Section Five-Earthen Dam

James City County, Virginia FES Report No. 1-9C120.312

Dear Mr. Ottino:

Pursuant to the contractor's request an experienced Geotechnical Engineer with Foundation Engineering Science, Inc. (FES) visited the project site on April 15, 2001. The specific purpose of this visit was to evaluate the soils located at the existing Dam and determine its suitability as a backfill material for building pads and pavement areas within the Williamsburg Plantation, Section five in James City County, Virginia.

1.0 SITE OBSERVATIONS AND EVALUATIONS

The existing Dam was cleared from the "Topsoil", roots and unsuitable materials. The soils within the existing Dam was visually classified to consist of reddish brown silty sand (SM) with organic materials and woods and reddish brown clayey sand (SC) with organic materials and woods.

2.0 CONCLUSIONS AND RECOMMENDATIONS

Based on our review of the project specifications, and engineering judgement, FES offers the following conclusions and recommendations.

1. The soils within the existing Dam was evaluated and consisted of silty sand (SM) and clayey sand (SC). The silty sand (SM) and clayey sand (SC) are acceptable as backfill materials if these materials are cleared of the organic matter and woods, placed with a moisture content within ±20 percent of the optimum moisture, the fines content [passing the No. 200 Sieve] is less than thirty-five (35) percent, compaction, moisture and stability can be achieved.

Existing Dam Soils Evaluation Report
Williamsburg Plantation, Section File Carthen Dam
James City County, Virginia
FES Report No. 1-9C120.312

2. Due to the contractor's excavator being down during our site visit, FES representative recommended evaluating the existing soils within the Dam during excavation operation of these materials and prior to utilizing as backfill material and performing laboratory classification testing.

FES appreciates the opportunity to be of service to **Williamsburg Plantation**, **Inc**. on this important project and look forward to its successful completion. Should you have any questions regarding this report, please do not hesitate to contact the undersigned.

Respectfully submitted,

_dres Hawan

FOUNDATION ENGINEERING SCIENCE, INC.

Idres Hawarry

Project Engineer

Raja S. El-Awar, P.E. Principal Engineer

A Reg. No. 26383

XCopies:

(1) Bush Construction Corporation - Mr. Ken Yerby

c:\company\oldfiles\1999\cmt\1-9C120.312

11843 B Canon Boulevard

Newport News, Virginia 23606

Telephone (757) 873-4113 Fax (757) 873-4114

email: relawar@fesva.com

-				CONC	CONCRETE FIELD INSPECTION REPORT	FIELD	INSPE	CTION	REPO	RT^1			Page 1 of 2
Project Name	9	Williamsb	Williamsburg Plantation, Section Five, Earthen Dam	ion, Sectio	on Five, E	arthen D		Project No.		1-9CI	1-9C120.329		
Client & Address	dress	The Bush	The Bush Companies				Ď	Date		April	April 17, 2002		
		4029 Ironl	4029 Ironbound Road, Suite 200	1, Suite 20	00		M	Weather		Sunny		:	
		Williamsb	Williamsburg, Virginia 23188	ia 23188			<u> </u> ජ	General Contractor	ntractor	The B	The Bush Companies	ies	
							Įŏ.	Concrete Contractor	ontractor	U.S. &	U.S. & H. Company, Inc.	ıy, Inc.	
Project Location	tion	James City	James City County, Virginia	7irginia			E	FES Representative	entative	rs			
FES observe	d the plac	sement of 6	cubic yards	of 3000 I	psi concret	te (Mix II	5 30-111)	delivered	to the pro	ject by Cu	FES observed the placement of 6 cubic yards of 3000 psi concrete (Mix ID 30-111) delivered to the project by Custom Concrete.	ite.	
Set No.	Time	Ticket	Truck	Batch	Time	Air	Conc.	Air ³		Slump ⁴	Total	Lo	Location
No. of			Number	Time	Placed	Temp	Temp ²	(%)	(Gal.)	(in.)	Concrete		
Cyl.	Made					(F)	(F)				riaceu (c.y.)		
I 5	4:10	994485	169	3:30	4:30	91	85	4.0	N/A	4.0	0.9	Concrete	Concrete Cradle Slab
						SPECIF	SPECIFICATION REQUIREMENTS	REQUIR	EMENTS				•
No. of Cylinders	ders	5/5(5/50 yds.		Slun	Slump (in.)	4 + 1	Air	Air (%)	4.0	Streng	Strength at 28 days (psi)	3000
Comments:		•											
Concrete is sampled in accordance with ¹ ASTM C31, ² ASTM C1064, ³ ASTM C231, ⁴ ASTM C143	sampled	in accorda	nce with ¹ A	STM C3	1, ASTM	C1064,	3ASTM C	231, ⁴ AS	TM C143				
Concrete molds conform to ASTM C470 requirements.	olds cont	form to AS.	TM C470 r	equireme	ints.								

Respectfully sybmitted,

Idres Hawarry

Project Engineer

(1) Bush Companies - Plantation Group, LLC - Mr. Ken Yerby

X Copies:

(1) James City County - Mr. Gerald E. Lewis

(1) VDOT - Mr. Mark D. Yeatts

(1) George Nice & Sons, Inc. - Mr. Ray Nice, P.E.

(1) AES Consulting Engineers - Mr. Richard Costello, P.E.

David L. Doran, E.I.T. Project Engineer

Concrete molds conform to ASTM C470 requirements.

11843 B Canon Boulevard Newport News, Virginia 23606 Telephone (757) 873-4113 Fax (757) 873-4114

		CONCRE	TE COMP	PRESSIVE	STRENG	TH TES	T REPORT	1	P	age 2 of 2
Client		The Bush Compar	nies		•	Report	Date	May	15, 2002	
		4029 Ironbound R	load, Suite 2	00						
		Williamsburg, Vin	ginia 23188							
Project Name		Williamsburg Plan	ntation, Sect	ion Five, Ear	then Dam	Project	No	1-9C	120.329	
Project Locati	ion	James City Count	y, Virginia	****		Set ID		I (A,	B,C,D,E)	
General Contr	ractor	The Bush Compar	nies			Mix ID	-	30-1	11	
Date Sampled	1	April 17, 2002				Design	Strength (psi)	3000		
Date Received	d	April 18, 2002				Admixt	ure			
				FIELD TE	EST DATA	-		S		· · · · · · · · · · · · · · · · · · ·
Supplier		Custom Concrete	Truck	No.	169		Ticket No.		994485	,
Batch Time		3:30	Samp	le Time	4:10		Time Placed		4:30	
Concrete Tem	ıp ² (F)	85	Air T	emp (F)	91		Weather		Sunny	
Slump ³ (in.)		4.0	Air C	ontent ⁴ (%)	4.0		Unit Wt.5 (pcf)	144	
Water Added	(gal)	N/A	Qty. I	Rep. (yd³)	6		Sampled by ⁶		LS	
Placement Lo	cation	Concrete Cradle	Slab							
	-	TEST RE	SULTS							
SAMPLE	DIA	. AREA	TEST	AGE	MAX.	UNIT	COMP.		REAK	TESTED
ID NUMBER	(in.)	(sq. in.)	DATE	(days)	LOAD (lbs.)	WT. (pcf)	STRENGTH (psi)		ГҮРЕ	BY
12519	5.97	27.99	4-24-02	7	100,000	144	3570		D	BS
12526	5.95		4-24-02	7	90,000	177	3240		D	BS
12521	5.95		5-15-02	28	125,000		4490		A	LS
12521	5.96		5-15-02	28	123,000		4580		A	LS
12523	3.90	27.30	3-13-02	SP	120,000	 	4380		л	
Break Type:	A-C	one P.Co	ne & Split		Cone & She	l	D-Shear,	F.C	Columna	<u> </u>
Non-Complia		Temp	nie & spin	Slump	John & She	Air	D-Silear,		me	41
Corrections M						Air		200	me	1
	1122	Temp		Slump						
Sample Defec	ts	None		Curin	g Temp (F)	71	Hu	midity	(%)	100

Concrete is sampled in accordance with ¹ASTM C39, ²ASTM C1064, ³ASTM C143, ⁴ASTM C231, ⁵ASTM C138, ⁶ASTM C31

GEORGE NICE & SONS, INC.

- Road & Utility Construction
- Site Development

FAX

Res	Williamsburg Plantation	n/VDOT Joint Pond CC:		
Phone:		Date:	April 18, 2002	• • • • • • • • • • • • • • • • • • •
fax:	259-4032	Pages	4	

Comments:

DESIGN INFO/ CORKESPONDENCE

143 Skimino Road • Williamsburg, Virginia 23188 (757) 565-2885 • Fax (757) 565-1526 • www.gniceandsons.com

1

Memorandum

DATE:

February 18, 2002

TO:

Mr. P.K. Das, Virginia Department of Transportation

Mr. Darryl Cook, James City County Environmental Division

CC:

Mr. Ken Yerby, Bush Construction Mr. Ray Nice, George Nice and Sons

FROM:

Charles Records, AES Consulting Engineers

C13(2)

SUBJECT:

Williamsburg Plantation - VDOT Joint Pond

The purpose of this memo is to address and bring closure to a few items that have been the topic of recent discussion. All of these items relate to the reconstruction of the existing VDOT stormwater management facility.

Based on our discussions and your decision, we will no longer be providing anti-seep collars for seepage control in the reconstruction of this facility. You have indicated VDOT's request to use a concrete cradle in lieu of the anti-seep collars to provide both seepage control and a better foundation for the pipe.

As proposed, the concrete cradle will extend from the existing outlet structure, which will remain, to the outfall of the 42" outlet barrel. With this proposal, the contractor will have to provide a new 42" reinforced concrete pipe (barrel) in accordance with VDOT standards and specifications for pond embankment construction. Furthermore, as the existing outlet structure for the pond will remain, so will the first joint of the pipe barrel attached to the outlet structure.

Please see the attached sketch that, with your approval, will be processed as a change order for the project.

Although it is proactive to make changes to the design of this facility before construction, it is important to note that these plans were reviewed and approved by your office before you inquired about making these changes. In an effort to expedite this change order for increasing the contractor's scope of work, we would appreciate your immediate response or approval for this design change.

If you have any questions or concerns, please feel free to contact me at 253-0040. I look forward to working with you to complete the design process of this project.

M.S. Consulting Engineers Fax Memorandum

5246 Olde Towne Road, Suite 1 · Williameburg, Virginia 23188
Telephone: (787) 253-0040 · Receimile: (757) 220-5694 · Email: ses@sesvi.com AND THE RESERVE OF THE PARTY OF

TO: KEN YELLEY, PIST NICE	Org./Firm: Bush G. Nice & Sons
Fax Number: 229 2542- ,50 057	Date: 3(7/02
From: Charles Records	Pages Including Cover Page: 3
cc;	cc Fax Number:
Subject: Williamsburg Plantat	ia VDOT FACILITY
C. Urgent S. For Review D	Please Comment 🔲 Please Reply
Comments:	
Ken and Ray	
ATTACHEL ARE THE	VOOT APPROVED
bokuments to Proce	
often for the conce	
PLEASE COLL 18 YOU	
The	3 ,
Ch	onlas Recordo

Confidentiality Note: The documents accompanying this fax may contain confidential information. This information is intended only for the use of the individual or entity named on the transmission sheet. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, or the taking of any ection in relience on the contents of this faxed information is strictly prohibited, and that the documents should be returned to AES Consulting Engineers. If you have received this fax in error, please notify us by telephone immediately at the number above so that we can arrange for the return of the original document at no cost to you.

76**68 022** 252 5501655757:0T

300

AES Consulting Engineers Fax Memorandum

5248 Olde Towne Road, Suite 1 • Williamsburg, Virginia 23188 Telephone: (757) 253-0040 • Facsimile: (757) 220-8994 • Email: aes@aesva.com

TOPK Das, Darry Cook	Org./Firm:
Fax Number: 253-4556, 353625	Date: 2/18/02
From: Charles Recard	Pages Including Cover Page:
co: Ken Yerby, Ray NICC	cc Fax Number: 2009 2542 565 1520
Subject:	
□ Urgent □ For Review □] Please Comment
Comments:	
While this is a VDOT project,	simply providing a concerte cradle will
not prevent supege through the	re dom. A gravel filter should be
provided on the down downstream	•
through the dom with the cred	
of the pipe. Dec 2/22/02	,

Confidentiality Note: The documents accompanying this fax may contain confidential information. This information is intended only for the use of the individual or entity named on the transmission sheet. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, or the taking of any action in reliance on the contents of this faxed information is strictly prohibited, and that the documents should be returned to AES Consulting Engineers. If you have received this fax in error, please notify us by telephone immediately at the number above so that we can arrange for the return of the original document at no cost to you.

Memorandum

DATE:

February 18, 2002

TO:

Mr. P.K. Das, Virginia Department of Transportation

Mr. Darryl Cook, James City County Environmental Division

CC:

Mr. Ken Yerby, Bush Construction Mr. Ray Nice, George Nice and Sons

FROM:

Charles Records, AES Consulting Engineers

C1312

SUBJECT:

Williamsburg Plantation - VDOT Joint Pond

The purpose of this memo is to address and bring closure to a few items that have been the topic of recent discussion. All of these items relate to the reconstruction of the existing VDOT stormwater management facility.

Based on our discussions and your decision, we will no longer be providing anti-seep collars for seepage control in the reconstruction of this facility. You have indicated VDOT's request to use a concrete cradle in lieu of the anti-seep collars to provide both seepage control and a better foundation for the pipe.

As proposed, the concrete cradle will extend from the existing outlet structure, which will remain, to the outfall of the 42" outlet barrel. With this proposal, the contractor will have to provide a new 42" reinforced concrete pipe (barrel) in accordance with VDOT standards and specifications for pond embankment construction. Furthermore, as the existing outlet structure for the pond will remain, so will the first joint of the pipe barrel attached to the outlet structure.

Please see the attached sketch that, with your approval, will be processed as a change order for the project.

Although it is proactive to make changes to the design of this facility before construction, it is important to note that these plans were reviewed and approved by your office before you inquired about making these changes. In an effort to expedite this change order for increasing the contractor's scope of work, we would appreciate your immediate response or approval for this design change.

If you have any questions or concerns, please feel free to contact me at 253-0040. I look forward to working with you to complete the design process of this project.

EXISTING SWM FACILITY SEDIMENT BASIN CALCULATIONS

FOR

WILLIAMSBURG PLANTATION Section 5: Units 97-133

Longhill Road Williamsburg, Virginia 23188

Prepared By:

AES Consulting Engineers 5248 Olde Towne Road, Suite 1 Williamsburg, Virginia 23188 AES Project No. 7555-14 February 1, 2002

i	(cfs)	interval (min)	peak (min)	(cuft)	period (yrs)	hyd(s)	elevation (ft)	storage (cuft)	description
SCS Runoff	53.6	12	732	239,807	2				2 YEAR SCS POST-
SCS Runoff	114.3	12	732	511,676	10		-		10 YEAR SCS POST
SCS Runoff	130.6	12	732	586,080	25			· 	25 YEAR SCS POST
SCS Runoff	206.8	12	732	937,249	100				100 YEAR SCS POS
Rational	60.3	1	25	135,682	2				2 yr RAT post stor
Rational	84.6	1	25	190,353	10				10 yr RAT post sto
Rational	97.6	1	25	219,658	25				25 yr RAT post sto
Rational	118.3	1	25	266,082	100				100 yr RAT post st
Reservoir	41.2	12	744	238,243	2	1	52.70	102,592	2yr SCS post - rou
Reservoir	98.2	12	744	510,111	10	2	53.54	130,451	10yr SCS post - ro
Reservoir	112.3	12	744	584,515	25	3	53.72	136,615	25yr SCS post - ro
Reservoir	143.1	12	744	935,684	100	4	55.43	203,177	100yr SCS. post-ro
Reservoir	38.5	1	43	123,002	2	6	52.66	101,091	2yr RAT post - rou
Reservoir	60.4	1	39	177,633	10	7	53.01	112,329	10yr RAT post - ro
Reservoir	71.8	. 1	38	206,923	25	8	53.18	118,111	25yr RAT post - ro
Reservoir	90.2	1	37	253,326	100	9	53.44	126,850	100yr RAT post -ro
							55.8 - <u>55.43</u> 0.37' f	reebd for	100grstorm
	SCS Runoff SCS Runoff Rational Rational Rational Reservoir Reservoir Reservoir Reservoir Reservoir Reservoir	SCS Runoff 130.6 SCS Runoff 206.8 Rational 60.3 Rational 84.6 Rational 97.6 Rational 118.3 Reservoir 41.2 Reservoir 98.2 Reservoir 112.3 Reservoir 143.1 Reservoir 60.4 Reservoir 71.8	SCS Runoff 130.6 12 SCS Runoff 206.8 12 Rational 60.3 1 Rational 84.6 1 Rational 97.6 1 Rational 118.3 1 Reservoir 41.2 12 Reservoir 98.2 12 Reservoir 112.3 12 Reservoir 143.1 12 Reservoir 38.5 1 Reservoir 60.4 1 Reservoir 71.8 1	SCS Runoff 130.6 12 732 SCS Runoff 206.8 12 732 Rational 60.3 1 25 Rational 84.6 1 25 Rational 97.6 1 25 Rational 118.3 1 25 Reservoir 41.2 12 744 Reservoir 98.2 12 744 Reservoir 143.1 12 744 Reservoir 143.1 12 744 Reservoir 38.5 1 43 Reservoir 60.4 1 39 Reservoir 71.8 1 38	SCS Runoff 130.6 12 732 586,080 SCS Runoff 206.8 12 732 937,249 Rational 60.3 1 25 135,682 Rational 84.6 1 25 190,353 Rational 97.6 1 25 219,658 Rational 118.3 1 25 266,082 Reservoir 41.2 12 744 238,243 Reservoir 98.2 12 744 510,111 Reservoir 112.3 12 744 584,515 Reservoir 143.1 12 744 935,684 Reservoir 38.5 1 43 123,002 Reservoir 60.4 1 39 177,633 Reservoir 71.8 1 38 206,923	SCS Runoff 130.6 12 732 586,080 25 SCS Runoff 206.8 12 732 937,249 100 Rational 60.3 1 25 135,682 2 Rational 84.6 1 25 190,353 10 Rational 97.6 1 25 219,658 25 Rational 118.3 1 25 266,082 100 Reservoir 41.2 12 744 238,243 2 Reservoir 98.2 12 744 510,111 10 Reservoir 112.3 12 744 584,515 25 Reservoir 143.1 12 744 935,684 100 Reservoir 38.5 1 43 123,002 2 Reservoir 60.4 1 39 177,633 10 Reservoir 71.8 1 38 206,923 25	SCS Runoff 130.6 12 732 586,080 25 SCS Runoff 206.8 12 732 937,249 100 Rational 60.3 1 25 135,682 2 Rational 84.6 1 25 190,353 10 Rational 97.6 1 25 219,658 25 Rational 118.3 1 25 266,082 100 Reservoir 41.2 12 744 238,243 2 1 Reservoir 98.2 12 744 510,111 10 2 Reservoir 112.3 12 744 584,515 25 3 Reservoir 143.1 12 744 935,684 100 4 Reservoir 38.5 1 43 123,002 2 6 Reservoir 60.4 1 39 177,633 10 7 Reservoir 71.8 1 38 206,923 2	SCS Runoff 130.6 12 732 586,080 25 — — SCS Runoff 206.8 12 732 937,249 100 — — Rational 60.3 1 25 135,682 2 — — Rational 84.6 1 25 190,353 10 — — Rational 97.6 1 25 219,658 25 — — Rational 118.3 1 25 266,082 100 — — Reservoir 41.2 12 744 238,243 2 1 52.70 Reservoir 98.2 12 744 510,111 10 2 53.54 Reservoir 112.3 12 744 584,515 25 3 53.72 Reservoir 143.1 12 744 935,684 100 4 55.43 Reservoir 38.5 1 43 123,002 2 6 52.66 Reservoir 71.8 1 38 </td <td>SCS Runoff 130.6 12 732 586,080 25 — — — SCS Runoff 206.8 12 732 937,249 100 — — — Rational 60.3 1 25 135,682 2 — — — Rational 84.6 1 25 190,353 10 — — — Rational 97.6 1 25 219,658 25 — — — Rational 118.3 1 25 266,082 100 — — — Reservoir 41.2 12 744 238,243 2 1 52.70 102,592 Reservoir 98.2 12 744 510,111 10 2 53.54 130,451 Reservoir 112.3 12 744 584,515 25 3 53.72 136,615 Reservoir 143.1 12 744 935,684 100 4 55.43 203,177 Reservoir 60.4 1<!--</td--></td>	SCS Runoff 130.6 12 732 586,080 25 — — — SCS Runoff 206.8 12 732 937,249 100 — — — Rational 60.3 1 25 135,682 2 — — — Rational 84.6 1 25 190,353 10 — — — Rational 97.6 1 25 219,658 25 — — — Rational 118.3 1 25 266,082 100 — — — Reservoir 41.2 12 744 238,243 2 1 52.70 102,592 Reservoir 98.2 12 744 510,111 10 2 53.54 130,451 Reservoir 112.3 12 744 584,515 25 3 53.72 136,615 Reservoir 143.1 12 744 935,684 100 4 55.43 203,177 Reservoir 60.4 1 </td

Proj. file: 755506DRYsedbasinfornitterame. VJCChydrographs. IDF Run date: 01-31-2002

PAGED ON CALCULATION TYPE USED, TOP OF DAM.
WILL NEED TO POE INCREASED: 665 > TOP = 56.8
PAT > TOP = 55.2

THIS PROVIDES 2-FOOT FREEDOMED FROM 75-1/2 ELEVISTIONS
(NO ENCERCENCY SPILLWAY)

-> WP. WELL = 19,06 AC

> PEQUIPED DRY VOLUME = 19.06 (67 04/AC) = 1277 04 = 34,480 CF

@ ELEV = 50,35 PROV. VOL = 34,720 4>34,480 G

-> TECUTED WET VOLUME = 19.06 (67 ° /AC) = 1277 CY = 34,480 CF

@ ELEV = 51.65 PROV VOL = 70,510 - 34,720 = 35,790 CF>34,4806

TETERMINE TRANSONN TIME OF WET VOLUME

$$C = 0.6$$

 $g = 32.2 \text{ FT/s}^2$
 $\Delta h = \frac{51.65 - 50.35}{2} = 0.65$
 $A = Tr^2 - T(\frac{2}{12})^2 = 0.0872.5F$

CONCLUSION: - How is this to be raised?

- 10 FLEV = 51,65 FROM. ELEV = 49,33.
- PARE TENATERING OPIFICE
 ELEVATION TO 50.35 FROM
 ELEV= 48, Z. TEMPORAPY
 THE TEMPORAPY
 THE TO PENAIN AS INDICATED
 ON CONSTRUCTION PLANS,
 (OVERNUE SONFIGRATION TYPE)

Reservoir No. 3 - existing basin

Pond Data

Pond storage is based on known values

Stage / Storage Table

Stage ft	Elevation ft	Contour area sqft	Incr. Storage cuft	Total storage cuft
0.00	47.85	00	0	0
2.20	50.00	00	0	24,840
3.15	51.00	00	0	51,786
4.15	52.00	00	0	80,595
5.15	53.00	00	0	111,834
6.15	54.00	00	0	146,286
7.15	55.00	00	0	184,437
8.15	56.00	00	0	227,826

Culvert / Orifice Structures

Weir Structures

	[A]	[B]	[C]	[D]	[A]	[B]	[C]	[D]
Rise in	= 42.0	4.0	0.0	0.0	Crest Len ft = 12.5	0.0	0.0	0.0
Span in	= 42.0	4.0	0.0	0.0	Crest El. ft = 51.65	0.00	0.00	0.00
No. Barrels	= 1	1	0	0	Weir Coeff. = 3.00	3.00	0.00	0.00
Invert El. ft	= 44.14	50.35	0.00	0.00	Eqn. Exp. = 1.50	1.50	0.00	0.00
Length ft	= 45.0	0.5	0.0	0.0	Multi-Stage = Yes	No	No	No
Slope %	= 0.42	0.00	0.00	0.00				
N-Value	= .013	.013	.013	.000				
Orif. Coeff.	= 0.60	0.60	0.60	0.00				
Multi-Stage	=	Yes	Yes	No	Tailwater Elevation =	45.70 ft		

Note: All outflows have been analyzed under inlet and outlet control.

Stage / Storage / Discharge Table

Stage ft	Storage cuft	Elevation ft	CIv A cfs	Clv B cfs	Clv C cfs	Clv D cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Discharge cfs
0.00	0	47.85	36.72	0.00			0.00				0.00
0.22	2,484	48.07	45.74	0.00			0.00				0.00
0.44	4.968	48.29	53.25	0.00			0.00				0.00
0.66	7.452	48.51	59.83	0.00			0.00				0.00
0.88	9,936	48.73	65.75	0.00			0.00				0.00
1.10	12,420	48.95	71.18	0.00			0.00				0.00
1.32	14,904	49.17	76.22	0.00			0.00	*			0.00
1.54	17,388	49.39	80.96	0.00			0.00				0.00
1.76	19,872	49.61	85.42	0.00			0.00				0.00
1.98	22,356	49.83	89.67	0.00			0.00	***			0.00
2.20	24,840	50.00	92.82	0.00			0.00				0.00

Continues on next page...

Stage / Storage / Discharge Table

Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	Clv D cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Discharge cfs
2.30	27,535	50.10	94.53	0.00			0.00				0.00
2.39	30,229	50.19	96.05	0.00			0.00				0.00
2.49	32,924	50.29	97.11	0.00			0.00				0.00
2.58	35,618	50.38	98.15	0.00			0.00				0.00
2.68	38,313	50.48	99.18	0.04			0.00				0.04
2.77	41,008	50.57	100.20	0.10			0.00				0.10
2.87	43,702	50.67	101.22	0.16			0.00				0.16
2.96	46,397	50.76	102.22	0.21			0.00				0.21
3.06	49,091	50.86	103.21	0.23			0.00				0.23
3.15	51,786	51.00	104.71	0.29			0.00				0.29
3.25	54,667	51.10	105.73	0.32			0.00				0.32
3.35	57,548	51.20	106.74	0.35			0.00				0.35
3.45	60,429	51.30	107.74	0.37			0.00				0.37
3.55	63,310	51.40	108.73	0.39			0.00				0.39
3.65	66,190	51.50	109.71	0.42			0.00				0.42
3.75	69,071	51.60	110.68	0.44			0.00				0.44
3.85	71,952	51.70	111.65	0.46			0.42				88.0
3.95	74,833	51.80	112.61	0.48			2.18				2.65
4.05	77,714	51.90	113.55	0.49			4.69				5.18
4.15	80,595	52.00	114.49	0.51			7.76				8.28
4.25	83,719	52.10	115.43	0.53			11.32				11.85
4.35	86,843	52.20	116.35	0.55			15.30				15.84
4.45	89,967	52.30	117.27	0.56			19.65				20.21
4.55	93,091	52.40	118.18	0.58			24.36				24.93
4.65	96,214	52.50	119.09	0.59			29.39				29.98
4.75	99,338	52.60	119.98	0.61			34.72				35.33
4.85	102,462	52.70	120.88	0.62			40.35	***			40.97
4.95	105,586	52.80	121.76	0.63			46.25				46.88
5.05	108,710	52.90	122.64	0.65			52.41				53.06
5.15	111,834	53.00	123.51	0.66			58.82				59.48
5.25	115,279	53.10	124.38	0.68	***		65.48				66.15
5.35	118,724	53.20	125.23	0.69			72.36		***		73.05
5.45	122,170	53.30	126.09	0.70			79.48				80.18
5.55	125,615	53.40	126.94	0.71			86.81				87.53
5.65	129,060	53.50	127.78	0.73			94.36		 .		95.09 102.85
5.75	132,505	53.60	128.62	0.74			102.11				
5.85	135,950	53.70	129.45	0.71			110.07				110.78 118.84
5.95	139,396	53.80	130.27	0.62			118.22				127.06
6.05	142,841	53.90	131.09	0.50			126.56				131.91
6.15	146,286	54.00	131.91	0.32			135.09				131.91
6.25	150,101	54.10	132.72	0.00	nair-Alle Alle		143.81				133.53
6.35	153,916	54.20	133.53	0.00			152.70				134.33
6.45	157,731	54.30	134.33	0.00			161.77				135.12
6.55	161,546	54.40	135.12	0.00			171.01				
6.65	165,361	54.50	135.91	0.00			180.42				135.91 136.70
6.75	169,177	54.60	136.70	0.00			190.00				130.70
6.85	172,992		137.48	0.00			199.75				
6.95	176,807	54.80	138.26	0.00			209.65				138.26 139.04
7.05	180,622		139.04	0.00			219.71				139.04
7.15	184,437	55.00 55.40	139.81	0.00			229.93				
7.25	188,776		140.57	0.00			240.30				140.57
7.35	193,115		141.33	0.00			250.83				141.33
7.45	197,454	55.30	142.09	0.00			261.50	,			142.09

existing basin Stage / Storage / Discharge Table

Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	Clv D cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Discharge cfs
7.55	201,793	55.40	142.84	0.00			272.32				142.84
7.65	206,132	55.50	143.59	0.00			283.28				143.59
7.75	210,470	55.60	144.34	0.00		*****	294.39				144.34
7.85	214,809	55.70	145.08	0.00			305.64				145.08
7.95	219,148	55.80	145.82	0.00			317.03				145.82
8.05	223,487	55.90	146.55	0.00			328.56				146.55
8.15	227,826	56.00	147.28	0.00			340.22				147.28

Hyd. No. 1

2 YEAR SCS POST-DEV

= SCS Runoff	Peak discharge = 53.61 cfs
= 2 yrs	Time interval = 12 min
= 39.53 ac	Curve number = 82
= 0.0 %	Hydraulic length = 0 ft
= USER	Time of conc. (Tc) = 25 min
= 3.50 in	Distribution = Type II
= 24 hrs	Shape factor = 484
	= 2 yrs = 39.53 ac = 0.0 % = USER = 3.50 in

Total Volume = 239,807 cuft

Hydrograph Discharge Table

Time Outflow					
cfs)					
12.79					
37.79					
53.61 <<					
40.24					
24.24					
10.67					
8.37					
6.96					
6.11					
5.46					

Hyd. No. 2

10 YEAR SCS POST-DEV

Hydrograph type	= SCS Runoff	Peak discharge	= 114.34 cfs
Storm frequency	= 10 yrs	Time interval	= 12 min
Drainage area	= 39.53 ac	Curve number	= 82
Basin Slope	= 0.0 %	Hydraulic length	
Tc method	= USER	Time of conc. (Tc)	
Total precip.	= 5.80 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Total Volume = 511,676 cuft

Hydrograph Discharge Table

Time Outflow					
(hrs	cfs)				
11.60	12.70				
11.80	31.89				
12.00	84.46				
12.20	114.34 <<				
12.40	83.83				
12.60	48.88				
12.80	20.75				
13.00	16.17				
13.20	13.38				
13.40	11.71				

Hyd. No. 3

25 YEAR SCS POST-DEV

Hydrograph type	= SCS Runoff	Peak discharge	= 130.56 cfs
Storm frequency	= 25 yrs	Time interval	= 12 min
Drainage area	= 39.53 ac	Curve number	= 82
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 25 min
Total precip.	= 6.40 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Total Volume = 586,080 cuft

Hydrograph Discharge Table

Time -- Outflow (hrs cfs) 11.60 15.03 11.80 37.20 12.00 97.09 12.20 130.56 << 12.40 95.39 12.60 55.36 12.80 23.37 18.20 13.00 13.20 15.05 13.40 13.16

Hyd. No. 4

100 YEAR SCS POST DEV

Hydrograph type	= SCS Runoff	Peak discharge	= 206.85 cfs
Storm frequency	= 100 yrs	Time interval	= 12 min
Drainage area	= 47.00 ac	Curve number	= 82
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 25 min
Total precip.	= 8.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Total Volume = 937,249 cuft

Hydrograph Discharge Table

Time Outflow					
(hrs	cfs)				
11.60	25.51				
11.80	61.42				
12.00	155.84				
12.20	206.85 <<				
12.40	150.13				
12.60	86.32				
12.80	36.07				
13.00	28.05				
13.20	23.16				

Hyd. No. 6

2 yr RAT post storm

Hydrograph type = Rational Storm frequency = 2 yrs Drainage area = 39.5 acIntensity = 2.88 in

I-D-F Curve

= JCChydrographs.IDF

Peak discharge = 60.30 cfsTime interval

= 1 min

Runoff coeff. = 0.53Time of conc. (Tc) = 25 min

Reced. limb factor = 2

Time -- Outflow

cfs)

9.65

8.44

7.24

6.03

(hrs

1.12

1.13

1.15

1.17

...End

Total Volume = 135,682 cuft

Time	Outflow	Time	Outflow
(hrs	cfs)	(hrs	cfs)
0.05	7.24	0.58	48.24
0.07	9.65	0.60	47.04
0.08	12.06	0.62	45.83
0.10	14.47	0.63	44.62
0.12	16.88	0.65	43.42
0.13	19.30	0.67	42.21
0.15	21.71	0.68	41.01
0.17	24.12	0.70	39.80
0.18	26.53	0.72	38.59
0.20	28.95	0.73	37.39
0.22	31.36	0.75	36.18
0.23	33.77	0.77	34.98
0.25	36.18	0.78	33.77
0.27 0.28 0.30 0.32 0.33 0.35 0.37 0.38 0.40 0.42 0.43 0.45 0.47 0.48 0.50 0.52 0.53	38.59 41.01 43.42 45.83 48.24 50.65 53.07 55.48 57.89 60.30 << 59.10 57.89 56.69 55.48 54.27 53.07 51.86 50.65 49.45	0.80 0.82 0.83 0.85 0.87 0.88 0.90 0.92 0.93 0.95 0.97 0.98 1.00 1.02 1.03 1.05 1.07 1.08 1.10	32.56 31.36 30.15 28.95 27.74 26.53 25.33 24.12 22.92 21.71 20.50 19.30 18.09 16.88 15.68 14.47 13.27 12.06 10.85

Hyd. No. 7

10 yr RAT post storm

Hydrograph type = Rational Storm frequency = 10 yrs Drainage area = 39.5 ac Intensity = 4.04 in

I-D-F Curve

= JCChydrographs.IDF

Peak discharge Time interval

Time -- Outflow

cfs)

13.54

11.84

10.15

8.46

(hrs

1.12

1.13

1.15

1.17

...End

= 84.60 cfs

Time interval = 1 min Runoff coeff. = 0.53 Time of conc. (Tc) = 25 min

Reced. limb factor = 2

Total Volume = 190,353 cuft

Time	Outflow		Time ·	Outflow
(hrs	cfs)	,	(hrs	cfs)
0.05	10.15		0.58	67.68
0.07	13.54		0.60	65.99
0.08	16.92		0.62	64.30
0.10	20.30		0.63	62.60
0.12	23.69		0.65	60.91
0.13 0.15	27.07 30.46		0.67 0.68	59.22 57.53
0.15	30. 4 6 33.84		0.00	57.53 55.84
0.17	37.22		0.70	54.14
0.10	40.61		0.72	52.45
0.22	43.99		0.75	50.76
0.23	47.38		0.77	49.07
0.25	50.76		0.78	47.38
0.27	54.14		0.80	45.68
0.28	57.53		0.82	43.99
0.30	60.91		0.83	42.30
0.32	64.30		0.85	40.61
0.33	67.68		0.87	38.92
0.35	71.07		0.88	37.22
0.37	74.45		0.90	35.53
0.38	77.83		0.92	33.84
0.40	81.22		0.93	32.15
0.42	84.60 <<		0.95	30.46
0.43	82.91		0.97	28.76
0.45	81.22		0.98	27.07
0.47	79.53		1.00	25.38
0.48 0.50	77.83 76.14		1.02 1.03	23.69 22.00
0.50	74.45		1.05	20.30
0.52	74.45		1.03	18.61
0.55	71.07		1.07	16.92
0.57	69.37		1.10	15.23
0.07	00.07		1.10	10.20

Hyd. No. 8

25 yr RAT post storm

Hydrograph type = Rational Storm frequency = 25 yrs Drainage area = 39.5 ac Intensity = 4.66 in

I-D-F Curve = JCChydrographs.IDF

Peak discharge = 97.63 cfs Time interval = 1 min Runoff coeff. = 0.53 Time of conc. (Tc) = 25 min

Reced. limb factor = 2

Total Volume = 219,658 cuft

Time Outflow		Time	Outflow	Time	Time Outflow	
(hrs	cfs)	(hrs	cfs)	(hrs	cfs)	
0.05	11.72	0.58	78.10	1.12	15.62	
0.07	15.62	0.60	76.15	1.13	13.67	
0.08	19.53	0.62	74.20	1.15	11.72	
0.10	23.43	0.63	72.24	1.17	9.76	
0.12	27.34	0.65	70.29			
0.13	31.24	0.67	68.34			
0.15	35.15	0.68	66.39	End		
0.17	39.05	0.70	64.43			
0.18	42.96	0.72	62.48			
0.20	46.86	0.73	60.53			
0.22	50.77	0.75	58.58			
0.23	54.67	0.77	56.62			
0.25	58.58	0.78	54.67			
0.27	62.48	0.80	52.72			
0.28	66.39	0.82	50.77			
0.30	70.29	0.83	48.81			
0.32	74.20	0.85	46.86	•		
0.33	78.10	0.87	44.91			
0.35	82.01	0.88	42.96			
0.37	85.91	0.90	41.00			
0.38	89.82	0.92	39.05			
0.40	93.72	0.93	37.10			
0.42	97.63 <<	0.95	35.15			
0.43	95.67	0.97	33.19			
0.45	93.72	0.98	31.24			
0.47	91.77	1.00	29.29			
0.48	89.82	1.02	27.34			
0.50	87.86	1.03	25.38		5 -	
0.52	85.91	1.05	23.43			
0.53	83.96	1.07	21.48			
0.55	82.01	1.08	19.53		* **	
0.57	80.05	1.10	17.57			

Hyd. No. 9

100 yr RAT post storm

Hydrograph type = Rational Storm frequency = 100 yrs Drainage area = 39.5 acIntensity

I-D-F Curve

= 5.64 in

= JCChydrographs.IDF

Peak discharge = 118.26 cfsTime interval = 1 min

Runoff coeff. = 0.53Time of conc. (Tc) = 25 min

Reced. limb factor = 2

Time -- Outflow

cfs)

18.92

16.56

14.19

11.83

(hrs

1.12

1.13

1.15

1.17

...End

Total Volume = 266,082 cuft

Time (hrs	Outflow cfs)	Time (hrs	Outflow cfs)
0.05 0.07 0.08 0.10 0.12 0.13 0.15 0.17 0.18 0.20 0.22 0.23 0.25 0.27 0.28 0.30 0.32 0.33 0.35 0.37 0.40 0.42 0.43 0.45 0.47 0.48 0.50 0.52 0.53 0.55 0.55 0.55	14.19 18.92 23.65 28.38 33.11 37.84 42.57 47.30 52.03 56.76 61.49 66.22 70.96 75.69 80.42 85.15 89.88 94.61 99.34 104.07 108.80 113.53 118.26 << 115.89 113.53 111.16 108.80 106.43 104.07 101.70 99.34 96.97	0.58 0.60 0.62 0.63 0.65 0.67 0.68 0.70 0.72 0.73 0.75 0.77 0.78 0.80 0.82 0.83 0.85 0.87 0.88 0.90 0.92 0.93 0.95 0.97 0.98 1.00 1.02 1.03 1.05 1.07 1.08 1.10	94.61 92.24 89.88 87.51 85.15 82.78 80.42 78.05 75.69 73.32 70.96 68.59 66.22 63.86 61.49 59.13 56.76 54.40 52.03 49.67 47.30 44.94 42.57 40.21 37.84 35.48 33.11 30.75 28.38 26.02 23.65 21.29

Hyd. No. 16

2yr SCS post - routed

Hydrograph type = Reservoir

Storm frequency = 2 yrs

Inflow hyd. No.

Max. Elevation $= 52.70 \, \text{ft}$ Peak discharge = 41.21 cfsTime interval

= 12 min

Reservoir name

= existing basin

Max. Storage

= 102,592 cuft

Storage Indication method used.

Total Volume = 238,243 cuft

Hydrograph Discharge Table

Time (hrs)	Inflow cfs	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	Clv D cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Outflow cfs
12.20	53.61 <<	52.37	117.88	0.57			22.79				23.37
12.40	40.24	52.70 <<	120.91	0.62			40.59				41.21 <<
12.60	24.24	52.58	119.79	0.60			33.58				34.18
12.80	10.67	52.34	117.59	0.57			21.30				21.87
13.00	8.37	52.15	115.85	0.54			13.12				13.65
13.20	6.96	52.05	114.95	0.52			9.51				10.03
13.40	6.11	51.99	114.41	0.51			7.49				8.00
13.60	5.46	51.95	114.04	0.50			6.26		****		6.77
13.80	4.93	51.92	113.77	0.50			5.39				5.89
14.00	4.49	51.90	113.57	0.49			4.74				5.23
14.20	4.10	51.88	113.40	0.49			4.28				4.78
14.40	3.81	51.87	113.25	0.49			3.89				4.38
		w*									

Hyd. No. 17

10yr SCS post - routed

Hydrograph type = Reservoir Storm frequency = 10 yrs

Inflow hyd. No. = 2 Max. Elevation = 53.54 ft Peak discharge = Time interval =

= 98.22 cfs = 12 min

Reservoir name

= existing basin

Max. Storage = 130,451 cuft

Storage Indication method used.

Total Volume = 510,111 cuft

Hydrograph Discharge Table

Time (hrs)	Inflow cfs	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	Civ D cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Outflow cfs
11.80	31.89	52.15	115.92	0.54			13.44			****	13.97
12.00	84.46	52.80	121.72	0.63			45.99		tion are true true true		46.62
12.20	114.34 <<	53.45	127.36	0.72			90.62				91.34
12.40	83.83	53.54 <<	128.12	0.73			97.49				98.22 <<
12.60	48.88	53.16	124.92	0.68			69.86				70.54
12.80	20.75	52.70	120.86	0.62	-		40.27				40.89
13.00	16.17	52.38	117.98	0.57			23.31				23.88
13.20	13.38	52.24	116.72	0.55			17.05				17.60
13.40	11.71	52.16	116.00	0.54			13.77				14.31
13.60	10.44	52.11	115.53	0.53			11.74				12.27
13.80	9.41	52.07	115.17	0.52			10.35				10.87

Hyd. No. 18

25yr SCS post - routed

Hydrograph type = Reservoir Storm frequency = 25 yrs

Inflow hyd. No. = 3

Max. Elevation = 53.72 ft Peak discharge

= 112.33 cfs

Time interval Reservoir name

= 12 min

= existing basin

Max. Storage

= 136,615 cuft

Storage Indication method used.

Total Volume = 584,515 cuft

Hydrograph Discharge Table

Time (hrs)	Inflow cfs	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	Clv D cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Outflow cfs
11.80	37.20	52.29	117.18	0.56			19.21				19.76
12.00	97.09	52.96	123.13	0.66			56.02				56.68
12.20	130.56 <	< 53.64	128.94	0.73			105.26				105.98
12.40	95.39	53.72 <<	129.61	0.70			111.64				112.33 <<
12.60	55.36	53.29	126.00	0.70			78.78				79.48
12.80	23.37	52.78	121.61	0.63			45.23				45.86
13.00	18.20	52.43	118.45	0.58			25.82				26.40
13.20	15.05	52.28	117.12	0.56			18.93				19.49
13.40	13.16	52.20	116.36	0.55			15.34				15.88
13.60	11.73	52.15	115.86	0.54			13.18				13.72
13.80	10.57	52.11	115.49	0.53			11.57				12.10

Hyd. No. 19

100yr SCS. post-routed

Hydrograph type = Reservoir Storm frequency = 100 yrs

Inflow hyd. No. = 4

Max. Elevation = 55.43 ft

Peak discharge = 143.08 cfs

Time interval = 12 min

Reservoir name = existing basin Max. Storage = 203,177 cuft

Storage Indication method used.

Total Volume = 935,684 cuft

Hydrograph Discharge Table

Time (hrs)	Inflow cfs	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	Clv D cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Outflow cfs
(
11.40	17.61	52.17	116.06	0.54			14.01				14.55
11.60	25.51	52.28	117.05	0.56			18.61				19.16
11.80	61.42	52.63	120.25	0.61			36.42				37.03
12.00	155.84	53.53	128.03	0.73		-	96.69				97.42
12.20	206.85 <	< 54.78	138.07				207.25				138.07
12.40	150.13	55.43 <<	143.08				275.82				143.08 <<
12.60	86.32	55.04	140.14				234.47				140.14
12.80	36.07	53.76	129.98	0.65			115.35				116.00
13.00	28.05	52.74	121.26	0.63			42.92				43.55
13.20	23.16	52.49	119.01	0.59			28.95				29.54
13.40	20.24	52.38	117.97	0.57			23.25				23.82
13.60	18.03	52.31	117.33	0.56			19.96				20.52
13.80	16.23	52.25	116.86	0.55			17.68				18.23
14.00	14.71	52.21	116.47	0.55			15.83				16.38
14.20	13.42	52.18	116.13	0.54			14.35				14.89
					,						

Hyd. No. 21

2yr RAT post - routed

Hydrograph type = Reservoir

Storm frequency = 2 yrs

Inflow hyd. No. = 6

Max. Elevation = 52.66 ft

Peak discharge

= 38.49 cfs

Time interval

= 1 min

Reservoir name

= existing basin

Max. Storage

= 101,091 cuft

Storage Indication method used.

Total Volume = 123,002 cuft

Hydrograph Discharge Table

Time (hrs)	Inflow cfs	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	Clv D cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Outflow cfs
0.42	60.30 <<	51.90	113.52	0.49		**	4.59				5.08
0.43	59.10	52.01	114.55	0.51			7.97				8.48
0.45	57.89	52.10	115.42	0.53			11.27				11.80
0.47	56.69	52.18	116.19	0.54	*		14.61				15.16
0.48	55.48	52.26	116.89	0.55			17.84			·	18.39
0.50	54.27	52.33	117.50	0.57			20.85				21.42
0.52	53.07	52.38	118.04	0.57			23.64				24.21
0.53	51.86	52.44	118.51	0.58			26.20				26.78
0.55	50.65	52.48	118.92	0.59			28.45				29.04
0.57	49.45	52.52	119.27	0.59			30.45				31.04
0.58	48.24	52.55	119.56	0.60			32.18				32.78
0.60	47.04	52.58	119.80				33.63				34.23
0.62	45.83	52.60	120.00				34.82				35.43
0.63	44.62	52.62	120.16				35.83				36.44
0.65	43.42	52.63	120.28				36.60				37.22
0.67	42.21	52.64	120.37				37.18				37.79
0.68	41.01	52.65	120.44				37.57				38.18
0.70	39.80	52.65	120.47				37.80				38.41
0.72	38.59	52.66 <<	120.48				37.88				38.49 <<
0.73	37.39	52.66	120.48				37.83				38.44
0.75	36.18	52.65	120.45				37.66				38.27
0.77	34.98	52.65	120.41				37.38				37.99
0.78	33.77	52.64	120.35				37.01				37.62
0.80	32.56	52.63	120.27				36.55				37.16
0.82	31.36	52.62	120.19				36.02				36.63
0.83	30.15	52.61	120.10				35.42				36.03
0.85	28.95	52.60	119.99				34.75				35.36
0.87	27.74	52.59	119.88				34.07				34.67
0.88	26.53	52.57	119.75				33.33				33.94
0.90	25.33	52.56	119.62				32.55				33.15
0.92	24.12	52.54	119.48				31.73				32.33
0.93	22.92	52.53	119.34				30.87				31.47
0.95	21.71	52.51	119.19				29.98				30.57
0.97	20.50	52.49	119.03				29.08				29.67
0.98	19.30	52.48	118.87				28.18	***			28.76
1.00	18.09	52.46	118.70	0.59			27.25				27.83

Continues on next page...

Hydrograph Discharge Table

Time (hrs)	Inflow cfs	Elevation ft	Clv A cfs	Clv B	Clv C	Clv D cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D	Outflow
1.02	16.88	52.44	118.53				26.29				26.88
1.03	15.68	52.42	118.36				25.32				25.90
1.05	14.47	52.40	118.18				24.32				24.90
1.07	13.27	52.38	117.99	0.57			23.37				23.94
1.08	12.06	52.36	117.80	0.57			22.39				22.96
1.10	10.85	52.34	117.61	0.57			21.40				21.97
1.12	9.65	52.32	117.41	0.56			20.39				20.95
1.13	8.44	52.29	117.21	0.56			19.38				19.94
1.15	7.24	52.27	117.01	0.56	*		18.41				18.96
1.17	6.03	52.25	116.80	0.55			17.42				17.97
1.18	4.82	52.23	116.59	0.55			16.41				16.96
1.20	3.62	52.20	116.37	0.55			15.39				15.93
1.22	2.41	52.18	116.15	0.54			14.43				14.97
1.23	1.21	52.15	115.93	0.54		*****	13.46			-	14.00
1.25	0.00	52.13	115.70	0.53		*****	12.48				13.01
1.27	0.00	52.11	115.47	0.53			11.52				12.05
1.28	0.00	52.08	115.27			*****	10.70				11.23
1.30	0.00	52.06	115.07	0.52			9.96				10.48
1.32	0.00	52.04	114.89	0.52			9.27				9.79
1.33	0.00	52.02	114.72	0.52			8.62				9.14
1.35	0.00	52.01	114.56	0.51			8.02				8.53
1.37	0.00	51.99	114.41	0.51			7.48	-			7.99
1.38	0.00	51.97	114.25	0.51			6.98	and otherwise tree days			7.49
1.40	0.00	51.96	114.11	0.50			6.51				7.02
1.42	0.00	51.95	113.98	0.50			6.08				6.58
1.43	0.00	51.93	113.85	0.50			5.67				6.17
1.45	0.00	51.92	113.74	0.50			5.29				5.78
1.47	0.00	51.91	113.63	0.50			4.93				5.42
1.48	0.00	51.90	113.52	0.49			4.61				5.10
1.50	0.00	51.89	113.43	0.49			4.35				4.84
1.52	0.00	51.88	113.33	0.49			4.10				4.59
1.53	0.00	51.87	113.24	0.49			3.87			*****	4.36
1.55	0.00	51.86	113.16	0.49			3.65				4.13
1.57	0.00	51.85	113.08	0.49			3.44				3.92

Hyd. No. 22

10yr RAT post - routed

Hydrograph type = Reservoir Storm frequency = 10 yrs

Inflow hyd. No. = 7

Max. Elevation = 53.01 ft

Peak discharge = 60.44 cfs

Time interval = 1 min

Reservoir name = existing basin Max. Storage = 112,329 cuft

Storage Indication method used.

Total Volume = 177,633 cuft

Hydrograph Discharge Table

Time (hrs)	Inflow cfs	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	Clv D cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Outflow cfs
0.37	74.45	52.02	114.68	0.52			8.46				8.97
0.38	77.83	52.14	115.84	0.54			13.07				13.61
0.40	81.22	52.27	116.96	0.56			18.16				18.72
0.42	84.60 <<	52.38	118.04	0.57			23.60				24.17
0.43	82.91	52.49	119.02	0.59			29.04				29.63
0.45	81.22	52.59	119.88	0.60			34.13				34.73
0.47	79.53	52.67	120.63	0.62			38.77				39.39
0.48	77.83	52.74	121.26	0.63			42.91				43.54
0.50	76.14	52.80	121.80	0.64			46.51				47.15
0.52	74.45	52.86	122.25	0.64			49.65				50.30
0.53	72.76	52.90	122.62	0.65			52.26				52.91
0.55	71.07	52.93	122.92	0.65			54.46	-		*****	55.11
0.57	69.37	52.96	123.15	0.66			56.21				56.87
0.58	67.68	52.98	123.34				57.56				58.22
0.60	65.99	53.00	123.47				58.56				59.22
0.62	64.30	53.01	123.56				59.23				59.89
0.63	62.60	53.01	123.61				59.62				60.28
0.65	60.91	53.01 <<	123.63				59.78				60.44 <<
0.67	59.22	53.01	123.63				59.74				60.40
0.68	57.53	53.01	123.60				59.51				60.18
0.70	55.84	53.00	123.55				59.13				59.79
0.72	54.14	53.00	123.48				58.59				59.25
0.73	52.45	52.99	123.38				57.90				58.56
0.75	50.76	52.97	123.28				57.09				57.75
0.77	49.07	52.96	123.15				56.19				56.84
0.78	47.38	52.94	123.02	0.65			55.19				55.84
0.80	45.68	52.93	122.87	0.65			54.11				54.76
0.82	43.99	52.91	122.71				52.95				53.60
0.83	42.30	52.89	122.55				51.77				52.41
0.85	40.61	52.87	122.37				50.54				51.19
0.87	38.92	52.85	122.19	0.64			49.27				49.91
0.88	37.22	52.83	122.00	0.64			47.94				48.58
0.90	35.53	52.81	121.81	0.64			46.58				47.22
0.92	33.84	52.78	121.61	0.63			45.22				45.86
0.93	32.15	52.76	121.40	0.63			43.84				44.47
0.95	30.46	52.74	121.19	0.63			42.43				43.06

Continues on next page...

Hydrograph Discharge Table

Time (hrs)	Inflow cfs	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	Clv D cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Outflow cfs
0.97	28.76	52.71	120.97	0.62			40.99			*****	41.61
0.98	27.07	52.69	120.75	0.62			39.56				40.18
1.00	25.38	52.66	120.52				38.13				38.74
1.02	23.69	52.63	120.29				36.67				37.28
1.03	22.00	52.61	120.06			*	35.19				35.80
1.05	20.30	52.58	119.82				33.74				34.35
1.07	18.61	52.55	119.58				32.29				32.89
1.08	16.92	52.53	119.33				30.82				31.41
1.10	15.23	52.50	119.08				29.33				29.92
1.12	13.54	52.47	118.82				27.89				28.48
1.13	11.84	52.44	118.56	0.58			26.44				27.02
1.15	10.15	52.41	118.29				24.96				25.54
1.17	8.46	52.38	118.02	0.57			23.52				24.10
1.18	6.77	52.35	117.75	0.57			22.10		*		22.67
1.20	5.08	52.32	117.47	0.56			20.65				21.21
1.22	3.38	52.29	117.18	0.56			19.21				19.77
1.23	1.69	52.26	116.89	0.55			17.83				18.38
1.25	0.00	52.23	116.59	0.55			16.42				16.97
1.27	0.00	52.19	116.30	0.54			15.08				15.62
1.28	0.00	52.17	116.04	0.54			13.93				14.47
1.30	0.00	52.14	115.79	0.54			12.87				13.40
1.32	0.00	52.11	115.56	0.53			11.88				12.41
1.33	0.00	52.09	115.35	0.53			11.00				11.53
1.35	0.00	52.07	115.15	0.52			10.24				10.77
1.37	0.00	52.05	114.96				9.53				10.05
1.38	0.00	52.03	114.78				8.87				9.39
1.40	0.00	52.01	114.62				8.25				8.76
1.42	0.00	52.00	114.47				7.68				8.19
1.43	0.00	51.98	114.31				7.17				7.68
1.45	0.00	51.97	114.17				6.69				7.20
1.47	0.00	51.95	114.03				6.24				6.75
1.48	0.00	51.94	113.90	0.50			5.82			To the speciments	6.33

Hyd. No. 23

25yr RAT post - routed

Hydrograph type = Reservoir Storm frequency = 25 yrs

Inflow hyd. No. = 8

Max. Elevation = 53.18 ft

Peak discharge = 71.82 cfs

Time interval = 1 min

Reservoir name = existing basin Max. Storage = 118,111 cuft

Storage Indication method used.

Total Volume = 206,923 cuft

Hydrograph Discharge Table

Time (hrs)	inflow cfs	Elevation ft	Civ A cfs	Clv B cfs	Clv C cfs	Clv D cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D	Outflow cfs
0.35	82.01	52.09	115.35	0.53			11.03		-		11.56
0.37	85.91	52.23	116.59				16.42		·		16.96
0.38	89.82	52.36	117.78				22.30				22.87
0.40	93.72	52.48	118.93				28.51				29.10
0.42	97.63 <<	52.60	120.02	0.61		-	34.96				35.57
0.43	95.67	52.72	121.01	0.62			41.26				41.88
0.45	93.72	52.81	121.86	0.64			46.95				47.59
0.47	91.77	52.89	122.58	0.65			51.99		·		52.64
0.48	89.82	52.96	123.18	0.66			56.41				57.06
0.50	87.86	53.02	123.67	0.66			60.02				60.69
0.52	85.91	53.06	124.04	0.67			62.89				63.56
0.53	83.96	53.10	124.34	0.67			65.23				65.91
0.55	82.01	53.12	124.58	0.68			67.16				67.84
0.57	80.05	53.15	124.77	0.68			68.65		·		69.33
0.58	78.10	53.16	124.91	0.68			69.75				70.44
0.60	76.15	53.17	125.00	0.68			70.51				71.19
0.62	74.20	53.18	125.06	0.69			70.96				71.65
0.63	72.24	53.18 <<	125.08	0.69			71.14				71.82 <<
0.65	70.29	53.18	125.07	0.69			71.08				71.76
0.67	68.34	53.18	125.04	0.69			70.80	*****			71.48
0.68	66.39	53.17	124.98	0.68			70.33				71.02
0.70	64.43	53.16	124.90				69.70				70.38
0.72	62.48	53.15	124.80				68.91				69.60
0.73	60.53	53.14	124.69	0.68			68.00				68.68
0.75	58.58	53.12	124.56				66.97				67.64
0.77	56.62	53.11	124.42	0.68			65.83				66.50
0.78	54.67	53.09	124.26	0.67			64.63				65.30
0.80	52.72	53.07	124.10	0.67			63.36				64.03
0.82	50.77	53.05	123.92	0.67			62.01				62.68
0.83	48.81	53.03	123.74				60.60				61.26
0.85	46.86	53.00	123.55				59.13				59.79
0.87	44.91	52.98	123.33	0.66			57.53				58.19
0.88	42.96	52.95	123.11				55.88				56.53
0.90	41.00	52.93	122.88	0.65			54.19				54.84
0.92	39.05	52.90	122.65				52.47				53.12
0.93	37.10	52.87	122.41	0.64			50.79				51.43

Continues on next page ...

Hydrograph Discharge Table

Time (hrs)	Inflow cfs	Elevation ft	CIv A cfs	Clv B cfs	Clv C cfs	CIv D cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Outflow cfs
0.95	35.15	52.85	122.16	0.64			49.08	*****			49.72
0.97	33.19	52.82	121.92				47.34				47.98
0.98	31.24	52.79	121.66				45.61		-	*****	46.24
1.00	29.29	52.76	121.41				43.89				44.52
1.02	27.34	52.73	121.15				42.16				42.78
1.03	25.38	52.70	120.88				40.39				41.02
1.05	23.43	52.67	120.61				38.69				39.31
1.07	21.48	52.64	120.34				36.96				37.58
1.08	19.53	52.61	120.06				35.21				35.82
1.10	17.57	52.58	119.78				33.51				34.11
1.12	15.62	52.55	119.49			-	31.80				32.40
1.13	13.67	52.51	119.20				30.07				30.66
1.15	11.72	52.48	118.91			*******	28.38				28.96
1.17	9.76	52.45	118.60	0.58			26.70		,		27.28
1.18	7.81	52.41	118.30	0.58			24.99				25.57
1.20	5.86	52.38	117.99	0.57			23.33				23.91
1.22	3.91	52.34	117.67	0.57		****	21.69		·		22.26
1.23	1.95	52.31	117.34	0.56			20.02				20.58
1.25	0.00	52.27	117.01	0.56			18.42				18.97
1.27	0.00	52.24	116.69	0.55			16.89		1		17.44
1.28	0.00	52.20	116.40	0.55			15.49				16.04
1.30	0.00	52.17	116.12	0.54	****		14.30				14.84
1.32	0.00	52.15	115.87	0.54			13.21		·		13.74
1.33	0.00	52.12	115.63	0.53			12.20				12.73
1.35	0.00	52.10	115.41	0.53			11.27				11.79
1.37	0.00	52.08	115.21				10.49				11.01
1.38	0.00	52.06	115.02	0.52			9.76			*****	10.28
1.40	0.00	52.04	114.84				9.08				9.60
1.42	0.00	52.02	114.67				8.45				8.96
1.43	0.00	52.00	114.52				7.86				8.37
1.45	0.00	51.99	114.36				7.33				7.84
1.47	0.00	51.97	114.21	0.51			6.84				7.35

Hyd. No. 24

100yr RAT post -routed

Hydrograph type = Reservoir Storm frequency = 100 yrs

Inflow hyd. No. = 9

Max. Elevation = 53.44 ft Peak discharge

= 90.24 cfs

Time interval

= 1 min

Reservoir name

= existing basin

Max. Storage

= 126,850 cuft

Storage Indication method used.

Total Volume = 253,326 cuft

Hydrograph Discharge Table

Time (hrs)	inflow cfs	Elevation ft	CIv A cfs	Clv B cfs	Clv C cfs	Clv D cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Outflow cfs
0.32	89.88	52.08	115.27	0.53			10.70				11.23
0.33	94.61	52.23	116.65				16.71				17.26
0.35	99.34	52.38	117.99				23.37				23.95
0.37	104.07	52.52	119.28	0.59			30.54				31.13
0.38	108.80	52.66	120.51	0.61			38.04				38.65
0.40	113.53	52.79	121.68	0.63			45.71			*	46.34
0.42	118.26 <	< 52.92	122.79	0.65			53.49	****			54.14
0.43	115.89	53.03	123.75	0.67	*		60.68	****			61.35
0.45	113.53	53.12	124.51	0.68			66.56				67.24
0.47	111.16	53.19	125.15				71.67				72.36
0.48	108.80	53.25	125.68	0.69			76.04		,		76.73
0.50	106.43	53.30	126.11	0.70			79.64		·		80.35
0.52	104.07	53.34	126.45				82.63				83.34
0.53	101.70	53.38	126.72				84.98				85.69
0.55	99.34	53.40	126.93				86.76				87.47
0.57	96.97	53.42	127.08				88.08				88.79
0.58	94.61	53.43	127.17				88.94		· 		89.66
0.60	92.24	53.43	127.23				89.40				90.12
0.62	89.88	53.44 <<	127.24				89.52				90.24 <<
0.63	87.51	53.43	127.22				89.33				90.05
0.65	85.15	53.43	127.17				88.87				89.59
0.67	82.78	53.42	127.09				88.18				88.89
0.68	80.42	53.41	126.99				87.28				87.99
0.70	78.05	53.39	126.87				86.21				86.93
0.72	75.69	53.38	126.73			****	85.01				85.72
0.73	73.32	53.36	126.57				83.66				84.37
0.75	70.96	53.34	126.40				82.19				82.90
0.77	68.59	53.32	126.22				80.62				81.32
0.78	66.22	53.29	126.03				78.96				79.66
0.80	63.86	53.27	125.82				77.26				77.95
0.82	61.49	53.24	125.61				75.47				76.17
0.83	59.13	53.22	125.39			-	73.62				74.31
0.85	56.76	53.19	125.16				71.73				72.42
0.87	54.40	53.16	124.92	0.68			69.83				70.51
0.88	52.03	53.13	124.67				67.87				68.55
0.90	49.67	53.11	124.42	0.68			65.87	·			66.54

Continues on next page...

Hydrograph Discharge Table

Time (hrs)	Inflow cfs	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	Clv D cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Outflow cfs
0.92	47.30	53.08	124,17	0.67		*****	63.88			*****	64.55
0.93	44.94	53.05	123.90				61.86				62.53
0.95	42.57	53.01	123.64				59.80				60.47
0.97	40.21	52.98	123.35				57.65				58.31
0.98	37.84	52.95	123.05				55.41				56.06
1.00	35.48	52.91	122.74				53.41				53.81
1.02	33.11	52.88	122.43		*****	*********	50.95				51.60
1.03	30.75	52.84	122.12				48.75				49.39
1.05	28.38	52.80	121.80				46.73				
1.07	26.02	52.77	121.48				44.39				47.17 45.02
1.08	23.65	52.73	121.16				42.22				45.02
1.10	21.29	52.69	120.83				40.05				42.85
1.12	18.92	52.66	120.50				37.94				40.67
1.13	16.56	52.62	120.30				35.81				38.56
1.15	14.19	52.58	119.81						***		36.42
1.17	11.83	52.54	119.46				33.71				34.31
1.17	9.46	52.50	119.40				31.63				32.23
1.20	7.10	52.46	118.75				29.53				30.12
1.22	4.73	52.40 52.42	118.73				27.51		~~~~		28.09
1.23	2.37	52.38	118.01				25.46				26.04
1.25	0.00	52.34	117.63			-	23.45				24.02
1.27	0.00	52.30	117.03				21.47	-			22.04
1.28	0.00	52.26	116.92				19.57				20.14
1.30	0.00	52.23	116.60				17.96				18.51
1.32	0.00	52.20	116.31		****		16.47				17.02
1.33	0.00	52.20 52.17	116.04				15.12				15.67
1.35	0.00	52.17 52.14	115.80				13.97				14.51
1.37	0.00	52.14 52.11					12.90				13.44
1.38	0.00	52.11 52.09	115.57				11.91				12.44
1.30	0.00	52.09 52.07	115.35				11.03				11.56
1.40	0.00	52.07 52.05	115.15				10.27				10.79
1.42	0.00		114.97				9.56				10.08
1.43	0.00	52.03	114.79	0.52			8.89				9.41

Sediment Basin Calculations

Williamsburg Plantation: Section 5

Units 97-100 and 130-133 Only

4/11/01

James City County

For Set S - ex. Basin to be used for blds above Add note from bottom of rest page 2 Phases - Ph1 Check a state of Permit-

> Prepared by: AES Consulting Engineers 5248 Olde Towne Rd. Williamsburg, Va. 23188 (757) 253-0040

Submitted: April 11, 2001

LANIALION SECTION 5: UNITS 97-100 \$ 130-133

SEDMENT TRAP DESIGN

TRSINDGE DREA = 7.6 AC; C=0.53; TC=20 WIN

DISTURBED DRAINAGE AREA = ZILB AC [1:18 FROM ROAD EXT. PRINECT

REQ. WET VOLUME = 2,18 AC × 67 &C = 146 Cf

RECE. DRY VOLUME = 2,18 AC x 67 4/AC = 146.CY/

FRISTING TOP OF DAM SHALL BE RAISED TO ELEV=73.8

POLD BOTTOM SHALL SELLEVATIONS (TOKEN)

25 YR STORM ELEVATION = 72.81.
10 YR STORM ELEVATION = 72.74
2 YR STORM ELEVATION = 12.6/

Reservoir No. 1 - Sediment Basin

English

Pond Data

Pond storage is based on known contour areas

Stage / Storage Table

Stage ft	Elevation ft	Contour area sqft	Incr. Storage cuft	Total storage cuft
0.00	70.00	3,996	0	0
1.00	71.00	6,350	5,173	5,173
2.00	72.00	7,314	6,832	12,005
3.00	73.00	9,212	8,263	20,268

Culvert / Orifice Structures

Weir Structures

	[A]	[B]	[C]	[D]		[A]	[B]	[C]	[D]
Rise in	= 24.0	4.0	0.0	0.0	Crest Len ft	= 12.6	0.0	0.0	0.0
Span in	= 24.0	4.0	0.0	0.0					0.0
•	· · · · · ·			0.0	Crest El. ft	= 72.25	0.00	0.00	0.00
No. Barrels	= 1	1	0	0	Weir Coeff.	= 3.00	3.00	0.00	0.00
Invert El. ft	= 69.50	71.25	0.00	0.00	Eqn. Exp.	= 1.50	1.50	0.00	0.00
Length ft	= 45.0	1.0	0.0	0.0	Multi-Stage	= Yes	No		
Slope %	= 4.11	0.00	0.00	0.00	main-otage	- 163	140	No	No
N-Value	= .013	.013	.000	.000					
Orif. Coeff.	= 0.60	0.60	0.00	0.00					
Multi Ctore	_			0.00					
Multi-Stage	=	Yes	No	No	Tailwater Ele	vation =	68.00 ft		

Stage / Storage / Discharge Table

Note: All outflows have been analyzed under inlet and outlet control.

Stage ft	Storage cuft	Elevation ft	Clv A cfs	Civ B cfs	Clv C cfs	Clv D cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Discharge cfs
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90	0 517 1,035 1,552 2,069 2,587 3,104 3,621 4,138 4,656	70.00 70.10 70.20 70.30 70.40 70.50 70.60 70.70 70.80 70.90	1.53 2.17 2.95 3.60 4.57 5.35 6.45 7.58 8.46 9.60	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	 	 	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0				0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
1.00	5,173	71.00	10.70	0.00			0.00				0.00 0.00

Continues on next page...

Stage / Storage / Discharge Table

Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	Clv D cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Discharge cfs
1.10	5,856	71.10	11.73	0.00			0.00				0.00
1.20	6,539	71.20	12.68	0.00							0.00
1.30	7,223	71.30	13.65	0.01			0.00				0.00
1.40	7,906	71.40	14.50				0.00				0.01
1.50	8,589	71.50		0.05			0.00				0.05
1.60	9,272		15.13	0.12			0.00				0.12
1.70	•	71.60	15.86	0.18			0.00				0.18
	9,955	71.70	16.57	0.19			0.00				0.19
1.80	10,639	71.80	17.24	0.26			0.00				0.15
1.90	11,322	71.90	17.90	0.29			0.00				0.29
2.00	12,005	72.00	18.52	0.32			0.00				
2.10	12,831	72.10	19.13	0.35			0.00				0.32
2.20	13,658	72.20	19.72	0.37	-						0.35
2.30	14,484	72.30	20.29	0.39			0.00				0.37
2.40	15,310	72.40	20.85				0.42				0.82
2.50	16,136	72.50	21.39	0.42			2.19				2.61
2.60	16,963	72.60		0.44			4.71				5.15
2.70	17,789		21.92	0.46			7.80				8.26
2.80		72.70	22.43	0.48			11.37				11.85
	18,615	72.80	22.94	0.49			15.37				15.86
2.90	19,442	72.90	23.43	0.48			19.75				20.22
3.00	20,268	73.00	23.91	0.35			24.47				23.91
											20.51

Hyd.	Hydrograph	Peak	Time	Ti 4	T	Γ			· · · · · · · · · · · · · · · · · · ·	
No.	type (origin)	flow (cfs)	Time interval (min)	Time to peak (min)	Volume (cuft)	Return period (yrs)	inflow hyd(s)	Maximum elevation (ft)	Maximum storage (cuft)	Hydrograph description
1	Rational	13.1	1	20	15,756	2				2 yr post-dev
2	Rational	18.2	1	20	21,857	10				10 yr post-dev
3	Rational	20.9	1	20	25,088	25				25 yr post-dev
5	Reservoir	7.7	1	28	15,209	2	1	72.58	16,816	2-yr Routed
6	Reservoir	13.3	1	25	21,310	10	2	72.74	18,083	10-yr. routed
7	Reservoir	16.2	1	25	24,541	25	3	72.81	18,670	25-yr routed
		·								

Proj. file: 755512bsedbasinex.gpw IDF file: JCChydrographs.IDF

Run date: 04-11-2001

Hyd. No. 1

2 yr post-dev

Hydrograph type = Rational Storm frequency = 2 yrs Drainage area = 7.6 ac Intensity = 3.26 in

I-D-F Curve =

= JCChydrographs.IDF

Peak discharge = 13.13 cfs Time interval = 1 min

Time interval = 1 min Runoff coeff. = 0.53

Time of conc. (Tc) = 20 min Reced. limb factor = 1

Total Volume = 15,756 cuft

Hydrograph Discharge Table

Time (hrs	Outflow cfs)	Time · (hrs	Outflow cfs)
0.03 0.05 0.07 0.08 0.10 0.12 0.13 0.15 0.17 0.18 0.20 0.22 0.23 0.25 0.27 0.28 0.30 0.32 0.35 0.37 0.38 0.40 0.42 0.43 0.45	cfs) 1.31 1.97 2.63 3.28 3.94 4.60 5.25 5.91 6.57 7.22 7.88 8.53 9.19 9.85 10.50 11.16 11.82 12.47 13.13 << 12.47 11.82 11.16 10.50 9.85 9.19 8.53		
0.47 0.48 0.50 0.52 0.53 0.55	7.88 7.22 6.57 5.91 5.25 4.60		

Hyd. No. 2

10 yr post-dev

Hydrograph type = Rational Storm frequency = 10 yrs Drainage area = 7.6 acIntensity

I-D-F Curve

= 4.52 in

= JCChydrographs.IDF

Peak discharge = 18.21 cfsTime interval = 1 min

Runoff coeff.

= 0.53

Time of conc. (Tc) = 20 min Reced. limb factor = 1

Total Volume = 21,857 cuft

Hydrograph Discharge Table

(hrs cfs) (hrs	Outflow cfs)
0.03 1.82 0.05 2.73 0.07 3.64 0.08 4.55 0.10 5.46 0.12 6.38 0.13 7.29 0.15 8.20 0.17 9.11 0.18 10.02 0.20 10.93 0.22 11.84 0.23 12.75 0.25 13.66 0.27 14.57 0.28 15.48 0.30 16.39 0.33 18.21 <<	0.57 0.58 0.60 0.62 0.63	5.46 4.55 3.64 2.73 1.82

Hyd. No. 3

25 yr post-dev

Hydrograph type = Rational Storm frequency = 25 yrs Drainage area = 7.6 acIntensity

I-D-F Curve

= 5.19 in

= JCChydrographs.IDF

Peak discharge = 20.91 cfs

Time interval = 1 min Runoff coeff. = 0.53

Time of conc. (Tc) = 20 min

Reced. limb factor = 1

Total Volume = 25,088 cuft

Hydrograph Discharge Table

Time - (hrs	- Outflow cfs)	Time (hrs	Outflow cfs)
0.03 0.05 0.07 0.08 0.10 0.12 0.13 0.15 0.17 0.18 0.20 0.22 0.23 0.25 0.27 0.28 0.30 0.32 0.33 0.35 0.37 0.38 0.40 0.42 0.43 0.45 0.47 0.48 0.50	2.09 3.14 4.18 5.23 6.27 7.32 8.36 9.41 10.45 11.50 12.54 13.59 14.63 15.68 16.73 17.77 18.82 19.86 20.91 << 19.86 18.82 17.77 16.73 15.68 14.63 13.59 12.54 11.50 10.45	0.57 0.58 0.60 0.62 0.63 End	6.27 5.23 4.18 3.14 2.09
0.52 0.53 0.55	9.41 8.36 7.32		

Hyd. No. 5

2-yr Routed

Hydrograph type = Reservoir Storm frequency = 2 yrs

Inflow hyd. No. = 1

Max. Elevation = 72.58 ft

Peak discharge Time interval = 7.70 cfs = 1 min

Reservoir name

= Sediment Basin

Max. Storage = 16,816 cuft

Storage Indication method used.

Total Volume = 15,209 cuft

Hydrograph Discharge Table

Time (hrs)	Inflow cfs	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	Clv D cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Outflow cfs
0.35	12.47	72.35	20.59	0.41			1.38				4 = 4
0.37	11.82	72.42	20.98	0.42			2.80				1.79
0.38	11.16	72.48	21.28	0.43			4.19				3.23
0.40	10.50	72.52	21.50	0.44			5.34				4.62
0.42	9.85	72.55	21.65	0.45		*****	6.22				5.78
0.43	9.19	72.57	21.75	0.45			6.80				6.67
0.45	8.53	72.58	21.80	0.45			7.12				7.25
0.47	7.88	72.58 <<	21.82	0.45			7.12 7.25				7.58
0.48	7.22	72.58	21.82	0.45			7.23				7.70 <<
0.50	6.57	72.58	21.79	0.45			7.06				7.67
0.52	5.91	72.57	21.75	0.45			6.80				7.51
0.53	5.25	72.56	21.69	0.45			6.47				7.26
0.55	4.60	72.54	21.62	0.45			6.07				6.92
0.57	3.94	72.53	21.54	0.44			5.61				6.51
0.58	3.28	72.51	21.46	0.44			5.12				6.06
0.60	2.63	72.50	21.37	0.44			4.61				5.56
0.62	1.97	72.48	21.27	0.43	******		4.15				5.05
0.63	1.31	72.46	21.16	0.43			3.66				4.58
0.65	0.66	72.44	21.05	0.42		~	3.14				4.09
0.67	0.00	72.42	20.94	0.42			2.60				3.56
0.68	0.00	72.40	20.83	0.42			2.12				3.02
0.70	0.00	72.38	20.73	0.41			1.81				2.53
0.72	0.00	72.36	20.65	0.41			1.55				2.23
0.73	0.00	72.35	20.57	0.41			1.33				1.95
0.75	0.00	72.34	20.51	0.40			1.10				1.72
0.77	0.00	72.33	20.45	0.40			0.92				1.51
0.78	0.00	72.32	20.40	0.40			0.76				1.32
0.80	0.00	72.31	20.36	0.40			0.62				1.16
0.82	0.00	72.30	20.32	0.40			0.50				1.02
0.83	0.00	72.30	20.28	0.39			0.50				0.89
0.85	0.00	72.29	20.25	0.39			0.41				0.81
				0.00			0.38				0.78

Hyd. No. 6

10-yr. routed

Hydrograph type = Reservoir Storm frequency = 10 yrs Inflow hyd. No. = 2

Inflow hyd. No. = 2 Max. Elevation = 72.74 ft Peak discharge = Time interval =

= 13.28 cfs = 1 min

Reservoir name =

= Sediment Basin

Max. Storage = 18,083 cuft

Storage Indication method used.

Total Volume = 21,310 cuft

Hydrograph Discharge Table

Time (hrs)	Inflow cfs	Elevation ft	Clv A cfs	Civ B cfs	Clv C cfs	Civ D cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Outflow cfs
0.30	16.39	72.38	20.74	0.41	*****		1.84				0.00
0.32	17.30	72.48	21.27	0.43			4.15				2.26
0.33	18.21 <<		21.73	0.45			6.70				4.59
0.35	17.30	72.63	22.09	0.46			8.98				7.15
0.37	16.39	72.68	22.33	0.47			10.68				9.45
0.38	15.48	72.71	22.49	0.48			11.82				11.15
0.40	14.57	72.73	22.58	0.48			12.51				12.30
0.42	13.66	72.74 <<	22.61	0.48			12.80				12.99
0.43	12.75	72.74	22.61	0.48			12.78				13.28 <<
0.45	11.84	72.73	22.58	0.48			12.76				13.26
0.47	10.93	72.72	22.53	0.48			12.53				13.01
0.48	10.02	72.71	22.46	0.48			11.58				12.60
0.50	9.11	72.69	22.38	0.47			10.99				12.06
0.52	8.20	72.67	22.29	0.47			10.34				11.46
0.53	7.29	72.65	22.18	0.47			9.64				10.82
0.55	6.38	72.63	22.07	0.46			9.64 8.89				10.11
0.57	5.46	72.61	21.96	0.46			8.10			*****	9.35
0.58	4.55	72.59	21.84	0.45			7.35				8.56
0.60	3.64	72.56	21.71	0.45			6.60				7.80
0.62	2.73	72.54	21.58	0.44			5.82				7.05
0.63	1.82	72.51	21.44	0.44			5.02 5.02				6.27
0.65	0.91	72.48	21.30	0.43			5.02 4.28				5.46
0.67	0.00	72.45	21.14	0.43							4.71
0.68	0.00	72.43	21.00	0.42			3.57				3.99
0.70	0.00	72.41	20.88	0.42			2.90				3.32
0.72	0.00	72.39	20.78	0.41	*****		2.34		*****		2.76
0.73	0.00	72.37	20.69	0.41			1.97				2.38
0.75	0.00	72.36	20.61	0.41			1.68				2.09
0.77	0.00	72.34	20.54	0.41			1.43				1.83
0.78	0.00	72.33	20.48	0.40			1.21				1.61
			20.70	U. 4 U	*****		1.01				1.41

Hyd. No. 7

25-yr routed

Hydrograph type = Reservoir Storm frequency = 25 yrs Inflow hyd. No.

= 3 Max. Elevation $= 72.81 \, ft$ Peak discharge = 16.15 cfsTime interval

= 1 min = Sediment Basin

Reservoir name Max. Storage = 18,670 cuft

Storage Indication method used.

Total Volume = 24,541 cuft

Hydrograph Discharge Table

Time (hrs)	Inflow cfs	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	Clv D cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Outflow cfs
0.28	17.77	72.40	20.87	0.42			2.20				
0.30	18.82	72.51	21.43	0.42			2.30				2.72
0.32	19.86	72.60	21.91	0.46			4.96				5.39
0.33	20.91 <<		22.32	0.46			7.77				8.23
0.35	19.86	72.74	22.62		~		10.55				11.03
0.37	18.82	72.77	22.81	0.48			12.84				13.32
0.38	17.77	72.80	22.92	0.49			14.36				14.85
0.40	16.73	72.80 72.81		0.49		*****	15.23				15.73
0.42	15.68	72.81 <<	22.97	0.49	~~~~		15.64		*****		16.13
0.43	14.63	72.80	22.97	0.49			15.66				16.15 <<
0.45	13.59		22.94	0.49			15.39				15.88
0.47	12.54	72.79 70.77	22.88	0.49		~~~~	14.94				15.43
0.48	11.50	72.77	22.81	0.49			14.34				14.83
0.50	10.45	72.76	22.72	0.49			13.63		~		14,11
0.52	9.41	72.74	22.62	0.48			12.83				13.32
0.52	8.36	72.72	22.51	0.48			11.98				12.46
0.55	7.32	72.69	22.39	0.47			11.10				11.58
0.55		72.67	22.27	0.47			10.24				10.71
0.57	6.27	72.64	22.14	0.47			9.34				9.81
	5.23	72.62	22.01	0.46			8.41				8.87
0.60	4.18	72.59	21.87	0.46			7.50				7.95
0.62	3.14	72.56	21.72	0.45			6.63				7.08
0.63	2.09	72.53	21.56	0.44			5.73				6.17
0.65	1.05	72.50	21.41	0.44			4.80				5.24
0.67	0.00	72.47	21.24	0.43			4.00				4.43
0.68	0.00	72.44	21.08	0.43			3.25				3.68
0.70	0.00	72.42	20.94	0.42			2.64				3.06
0.72	0.00	72.40	20.83	0.42			2.14				2.56
0.73	0.00	72.38	20.74	0.41			1.83				2.36
0.75	0.00	72.36	20.65	0.41			1.56				
0.77	0.00	72.35	20.58	0.41			1.33				1.97
			-				1.00				1.73

AES CONSULTING ENGINEERS

Engineering, Surveying and Planning 5248 Olde Towne Road, Suite 1 WILLIAMSBURG, VIRGINIA 23188

LETTER OF TRANSMITTAL

		57) 253-0 (757) 220			DATE 45/01	JOB NO.
TO J	CC EN	UIRON	HENDY T	Rusino	ATTENTION MR. DA	RRIL COOK
1032.					RE:	BRG PLANTATION
	······································				Sections	
		· · · · · · · · · · · · · · · · · · ·				7-100 \$ 130-133
WE AF	RE SENDING YO	DIJ X AH:	ached	er separate cover via		_ the following items:
WE AI						
•	☐ Shop dra	awings	☐ Prints	☐ Plar	·	☐ Specifications
	☐ Copy of	letter	☐ Change o	order	CALCULATION	
COPIES	DATE	NO.	,		DESCRIPTION	
~2_		1	Storas	SYSTEM	CALCULATI	0-15
						20,30,31
÷			·			18 (2 month 5)
						COMPANY SO
		-				23.22
						223
THES	E ARE TRANSI	MITTED as	checked below:			0/2/91.51.01.32
	☐ For appr	oval	□ Арр	roved as submitted	☐ Resubmit	copies for approval
	☐ For your	use	□ Арр	roved as noted	☐ Submit	copies for distribution
	☐ As reque	ested	☐ Retu	urned for corrections	☐ Return	corrected prints
	For revie	w and com	ment 🗆			,
	☐ FOR BIE	OS DUE			☐ PRINTS RETURNED	AFTER LOAN TO US
REMA	ARKS					
TAK	RYL					
	DIENSE	Cos	c upor	, RECEIP	to DIS	in second
Ser	MENT	F	5,10 Co.	UFIGURAST	ion for	THE PROJECT,
DED	LARE	3 T	pore, l	we will	BE ME	eting to
				the second secon		WEDNESDAY
AP	PILITH	@ Z	1100 PM	-(-	THER OF	
	·					ories Records

Drainage Calculations

Williamsburg Plantation: Section 5
Units 97-100 and 130-133 *Only*

James City County

Prepared by: AES Consulting Engineers 5248 Olde Towne Rd. Williamsburg, Va. 23188 (757) 253-0040

Submitted: April 2, 2001

Such Coach House

Project file: 755514sys1-32101.stm

IDF file: JCCstormsewer.IDF

No. Lines: 7

04-04-2001

nyuranow Storm Sewer Labulation

	·			5		\	7	7			i S Nasar
NOTE	Proje		<u> </u>	7 6	ڻ ص	4 (» N	<u> </u>		Line	Sta
S: Inten	Project File:			ယ ဟ	4	ωκ	s <u> </u>	End		Line	Station
sity = 1				60.0 80.0	100.0	90.0	38.0	179.0	3		Len
43.72/	4sys1-			0.54	0.18	0.32	0.51	0.18	(ac)	Incr	Drn
(Tc + 19	755514sys1-32101.stm		· · · ·	0.54	0.72	0.99	2,28	2.46	(ac)	Total	Drng Area
NOTES: Intensity = 143.72 / (Tc + 19.20) ^ 0.94;	3			0.55	0.40	0.60		0.90) (C)		Rnoff
	_		·	0.30	0.07	0.16		0 0.16		incr	# 34
Return period =		<u>.</u>		0 0.30	7 0.37	6 0.53					Area x C
	I					•		1.64	•	Total	င
10 Yrs.	I-D-F File:			10.0	5.0	5.0		5.0	(min)	Inlet	Tc
.; Initia				10.0	10.3	10.9	11.7	11.9	(min)	Syst	
tailwat	JCCstormsewer.IDF		· :	6.0	5.9	5.7	5.7	5.6	(in/hr)	3	Rain
er eleva	wer.IDF		!	1.77	2.18	6.28 3.08	8.38	9.24	(cfs)	100	Total
Yrs.; Initial tailwater elevation = 72.25			i	4.57	6.46	7.36 17.35	6.95	15.54	(cfs)	<u> </u>	Cap
2.25 (ft)				2.62	3.16	5.12 3.42	6.83	5.85	(ft/s)		√el
5			5	, 5	15	15 15		1 8	(in)	Size	
			1.00	0.50	1.00	1.30 7.22	1.16	2.19	(%)	Slope	Pipe
	Tot	-	70.00	·		0 76.00 2 82.50					
	al numb							74.78	æ	윤	Invert Elev
	Total number of lines: 7		0.00	83.50	82.50	75.22 76.00	74.78	70.86	3	Dn	Elev
	les: 7		70.03	84.38	84.09	78.16 83.20	77.04	75.94	3	d d	
									- -	-	HGL Elev
			/8.46	84.32	83.33	77.59 78.46	76.40	72.25	3	D	ev
	Run D		81.6/	87.50	87.50	82.84 86.50	79.98	79.79	(ft)	ل ه	Grnd
	ate: 04-	<u> </u>	82.84	87.50	86.50	79.98 82.84	79.79	72.36	_		Grnd / Rim Elev
	Run Date: 04-04-2001								3	밁	lev
-	_		4F1-4F	41-4H	4H-4G	4F-4E	4E-4D	4D-3D			盲
			•				•				Line ID

04-04-2001

Hydraflow Storm Sewer Tabulation

Τ							\	1								
Proje			-			ဖ	00	7	<u>ග</u>	ڻ ص	. 4	. N) <u> </u>		Line	2
Project File:		· · · · · ·				∞	7	<u>თ</u>	(J)	4	ω 1	ა _	E E		Line	5
			. •			42.0	222.0	59.0	42.0	124.0	85.0	70.0	136.0	3		
755512bsys1.stm						0.23	0.68	0.35	0.09	0.18	0.00			(ac)	Incr	
stm	445			,		0.23	0.91	1.26	1.35	1.53	1.53	1.90	2.25	(ac)	·	_
-			-		<u> </u>	0.90	0.56	0.61	0.60		0.00			(C)	·	_
						0.21	0.38	0.21	0.05		0.00		<u> 1948 - 1948 - 1948 - 1948 - 1948 - 1948 - 1948 - 1948 - 1948 - 1948 - 1948 - 1948 - 1948 - 1948 - 1948 - 194</u>	+	incr	_
			<u> </u>			0.21	3 0.59	0.80	5 0.86		0 1.06					
5				·		5.0	9 10.0		5.0		0.0			3	Total I	_
I-D-F File:				,	• .	5.0		10.0					5.0	(min)	inlet	_
JCCsto						· · ·	10.0	11.2	11.6		13.0		14.1	(min)	Syst	
JCCstormsewer.IDF	·					7.1	6.0	5.7	5.7		טו טו		Ω	(ln/hr)		1
er.IDF				·		1.47	3.51	4.60	4.86		5.76		7.85	(cfs)	•	
	·	<u>:</u>		···	· .	15.75	8.99	22.81	24.68	23.16	38.23	43.05	27.43	(cfs)		
						2.33	4.40	3.45	3.92	3.79	3.77	4.10	3.77	(ft/s)		
						5	5	24	24	24	2 2	24	24	3	Size	
						5.95	1.94	1.02	1.19	1.05	2.86	3.62	1.47	(%)	Slope	
Total r						89.30	86.80	82.50	81.90	81.40	79.00		72.00	(₹	<u>е</u> С	
Total number of lines: 9		• · · · · · · · · · · · · · · · · · · ·				86.80			_							
of lines		·			· 						·		70.00	3	Dn	
9			. 1.			89.79	87.55	83.26	82.68	80 00	79.85	77.91	72.99	3	ф	
						87.87	83.30	82.97	82.30	81 25	78.17	73.17	72.25	(₹	D.	
Run				•			<u> </u>			88 03						
Date:		<u> </u>						_				80.00	80.40	€	윤	
Run Date: 04-04-2001						94.14	90.16	88.92	88.92	83.50	80.00	80.40	72.00	3	Dn	
001						16-15	φ :	14-13	13-12	11-10	10-7	7-6	6-0			
						.	, (w . I	· -	• 0	•		6 - Outfall			

Drainage Calculations

Williamsburg Plantation: Section 5
Units 97-100 and 130-133 *Only*

James City County

Prepared by: AES Consulting Engineers 5248 Olde Towne Rd. Williamsburg, Va. 23188 (757) 253-0040

Submitted: April 2, 2001

i yulallow Storill Sewer labulation

1		·					·					- 1
Proje				7	<u>ი</u>	.	4	ω _N	. .		Line	
Project File:			· .	ω	5	4	ω	N -	End		Line	
				80.0	60.0	100.0	90.0	60.0	179.0	3		!-
14sys1-				0,46	0.54	0.18	0.27	0.32		(ac)	Incr	
755514sys1-32101.stm		<u>·</u>		0.46	0.54	0.72		1.77	<u> </u>) (ac)	Total	4
ä				0.75	0.55	0.40		0.70		(C)		┸
-		**************************************		5 0.34	5 0.30	0 0.07				- 3		coeff
	·							0.38		ļ ·	Incr	
		-		0.34	0.30	0.37	0.53	1.10	1.64		Total	
I-D-F File:				5.0	10.0	5.0	5.0	5.0	5.0	(min)	Inlet	
				5.0	10.0	10.3	10.9	11.7	11.9	(min)	Syst	1
JCCstormsewer.IDF				7.1	6.0	5.9	დ	5.7	5.6	(in/hr)		3
ewer.IC				2.46	1.77	2.18	3.08	8.38 6.28	9.24) (cfs)		flow
Ĭ				10.21	4.57		·	7.36) (cfs)		
		• •								,		<u>=</u>
				2.99		<u> </u>		5 12	5.85	(ft/s)	-	_
				5		15	15	5 5	8	<u>(j</u>	Size	
			•	2.50	0.50	1.00	7.22	1.16	2.19	(%)	Slope	
Total number of lines: 7				78.00	83.80	83 50	82.50	75.22	74.78	(£)	dП	
ımber c				76.00	83.50	82.50	76.00	74.78	70.86		Dn	
if lines:										€	5	
7		-		78.63	84 .38	84.09	83.20	77.04	75.94	3	цþ	
				78.46	84.32	83.33	78 46	76.40	72.25	(£)	Dn	
<u>ا</u>			******				·					
n Date:	· .					87.50	86 50	79.98	79.79	3	ф	
Run Date: 04-04-2001				82.84	87.50	86.50	82 84	79.79	72.36	(ft)	Dn	
2001				4F1-4F	4-4 14-14-14-14-14-14-14-14-14-14-14-14-14-1	4H-4G	4F-4E	4E-4D	4D-3D			-
		_		¥ T	T ;	តិ -	î î	đ i	a B			֭֓֞֞֜֜֜֝֜֜֜֝֓֓֓֓֓֓֓֓֓֜֜֜֜֜֓֓֓֓֓֡֓֜֜֜֜֜֓֓֡֓֜֡֓֡֓֜֜֜֡֡֡֓֜֜֡֡֡֓

CORH HOSE TOND EXTENSION

04-04-2001

Hydraflow Storm Sewer Tabulation

									41	4.16	
	ဖ	00	7	တ	ဟ	4	ω	s		LINE	3
	00	7	တ	ڻ.	4	ω	Ν -	End		Line	ᅱ
	42.0	222.0	59.0	42.0	124.0	85.0	70.0	136.0	3		-1
	0.23	0.68	0.35	0.09	0.18	0.00	-	100	(ac	İncr	-
	0.23	0.91	1.26	1.35	1.53	1.53	1.59	2.25	+-	<u></u>	4
	0.90	0.56	0.61	0.60	0.90	0.00	0 0	0.75	+-		соеп
	0.21	0.38	0.21	0.05	0.16			1.			_
	0.21	0.59	0.80	0.86	1.02	1.02	1.23	1.49			╛
	5.0	10.0	10.0	5.0	5.0	0 0	10.0	5.0	(min		+
	5.0	10.0	11.2	11.6	11.8	12.5	13.3	1 4			4
	7.1	6.0	5.7	5.7	წ	O1 0	n 51	ა			=
	1.47	3.51	4.60	4.86	5.74	5.62	6.61	7.85	(cfs)		flow
	15.75	8.99	22.81	24.68	23.16	25.73	43.05	27.43	(cfs)		<u>=</u>
	2.33	4.40	3.45						ļ		_
	5	15	24	24	24	24		24	- -	Siz	
	5.95	1.94	1.02	1.19	1.05	- 2.86 3.86	3.62	1.47			
· ·											
									ŧ	ž	
		7.55	3.26	2.68	2 25	9.85	7.91	2.99	æ	ф	
	87.87	83.30	82.97	82.30	81 O	78.17	73.17	72.25	ĵŧ	Dn	100
	94.14	94.14	90.16	88.92	88.00	83.50	80.00	80.40	a	두	9
	94.14		. ,						-	_	
									5	3	Y
	15	14	13 F	· ·	1-10	0-7	ტ	- Outfal			Line ID
		8 420 023 090 021 021 5.0 5.0 7.1 147 15.75 233 15 5.95 89.30 86.80 89.79 87.87 94.14 94.14	7 2220 0.66 0.91 0.56 0.38 0.59 10.0 10.0 6.0 3.51 8.99 4.40 15 1.94 86.80 82.50 87.65 83.30 94.14 90.16 84.20 0.23 0.23 0.29 0.21 0.21 5.0 5.0 7.1 1.47 15.75 2.33 15 5.95 89.30 86.80 89.79 87.87 94.14 94.14 94.14	6 58.0 0.35 1.26 0.61 0.21 0.80 10.0 11.2 5.7 4.60 22.81 3.45 24 102 82.50 81.90 83.26 82.97 90.16 88.92 7 222.0 0.68 0.91 0.56 0.38 0.59 10.0 10.0 6.0 3.51 8.99 4.40 15 1.94 86.80 82.50 87.55 83.30 94.14 90.16 84.20 0.23 0.23 0.23 0.90 0.21 0.21 5.0 5.0 7.1 1.47 15.75 2.33 15 5.95 89.30 88.80 89.79 87.67 94.14 94.14 94.14	5 420 009 1.35 0.60 005 0.86 5.0 11.6 5.7 4.86 24.68 3.92 24 1.19 81.90 81.40 82.68 82.68 82.90 82.50 65.0 1.25 0.51 0.21 0.80 10.0 11.2 5.7 4.60 22.81 34.5 24 1.02 82.50 81.90 83.26 82.27 90.16 88.92 88.92 82.20 0.68 0.91 0.55 0.38 0.59 10.0 10.0 6.0 3.51 8.99 4.40 15 1.94 88.80 82.50 87.55 83.30 94.14 90.16 82.20 0.23 0.23 0.20 0.21 0.21 5.0 5.0 7.1 1.47 15.75 2.33 15 5.85 88.30 86.80 89.79 87.87 94.14	4 1240 0.18 1.53 0.90 0.16 1.02 5.0 11.8 5.6 5.74 23.16 3.70 24 1.05 81.40 82.25 81.25 88.52 87.00 5.90 1.35 0.60 0.05 0.86 5.0 11.6 5.7 4.86 24.68 3.92 24 1.19 81.90 81.40 82.26 82.20 88.52 87.00 0.35 1.26 0.61 0.21 0.80 10.0 11.2 5.7 4.80 24.61 3.92 24 1.19 81.90 81.40 82.66 82.30 88.52 88.52 87.00 1.00 0.35 1.26 0.38 0.59 10.0 10.0 6.0 3.51 8.99 4.40 15 1.94 86.80 82.50 87.55 83.30 94.14 90.16 89.22 1.20 0.21 0.21 0.21 0.21 1.47 15.75 2.33 15 5.96 89.30 88.60 89.79 87.87 94.14 94.14	88.0 0.00 1.53 0.00 0.00 1.02 0.0 1.02	700 000 159 017 123 100 133 54 661 4305 410 24 362 7700 7200 7701 7317 80.00 80.44 80.00 155 000 155 000 102 000 153 55 562 2573 335 24 2.88 7900 7700 78.85 78.17 83.50 80.00 80.44 1240 018 153 000 016 102 00 112 55 562 2573 3.88 24 1.28 80.10 79.00 80.94 80.09 80.50 80.50 80.00 135 000 016 102 50 116 57 48.60 2573 3.88 24 1.28 80.10 79.00 80.94 80.09 80.25 81.25 80.22 87.00 80.94 80.00 135 000 100 100 112 57 48.60 82.51 3.45 24 1.05 81.40 80.10 82.55 81.25 80.22 87.00 80.94 80.94 80.94	Find 1980 0.35 2.25 0.75 0.26 1.49 5.0 14.1 5.3 7.65 27.43 3.77 24 1.47 72.00 72.90 72.95 72.25 80.40 72.00 72.95 72.25 80.40 72.00 72.95 72.95 72.25 80.40 72.00 72.95 72.95 72.25 80.40 72.00 72.95 72.95 72.25 80.40 72.00 72.95 72.95 72.17 80.00 80.40 72.00 72.95 72.25 80.40 72.00 72.00 72.00 72.95 72.25 80.40 72.00 72.00 72.95 72.25 80.40 72.00 72.95 72.25 80.40 72.00 72.95 72.25 80.20 80.40 80.40 72.00 72.95 72.25 80.40 72.00 72.95 72.25 80.40 72.00 72.95 72.25 80.40 72.00 72.95 72.25 80.40 72.00 72.00 72.95 72.25 80.20		

STORMWATER MANAGEMENT/ BMP CALCULATIONS FOR

COMBINED FACILITY
FOR
WILLIAMSBURG PLANTATION
AND
VDOT 199 – FACILITY "G"

Prepared By:
AES Consulting Engineers
5248 Olde Towne Road, Suite 1
Williamsburg, Virginia 23188
Submitted: February 26, 1999
Revised: March 21, 2001

Supporting Data

CALCULATE	D DV			
SHEET NO		0	F	
SUBJECT _				
PROJECT N	o			
PROJECT_				

		SHEET NO.	OF
		CALCULATED BY	DATE
THAINAGE	AREA SEPVED BY	Par	
	6A = 19.06 AC		
	POT AREA = 77.30		
FOURIE	CONTING OF WA	TENDER A	
APENT			
	0,90 AC E	0,35 AC @ C=0	35 0,55 ACRC=090
	4,56 AC	4.56 AC @ C	
3	137 AC	1.37 AC	¢=035
	Z= 483AC		
TOTAL	evised bizainage ,	AREA = 1906	
		= 39.53	
DETENUIVE %	INFERVIOUS		
we =	168 AC		
YLOT =	5,21 AC FROM		
	0.55 AC test	A EXPIGIT E	OF MMM SO% IMPORT
	5,50 AC - FROM	ABOVE DOUBLE	· S S Wikcom
HOAL =	13.18 AC		
% IMP =	403 (100) = 32	,7% =	
	403		

PROJECT		in the second se
PROJECT NO		
SUBJECT		
SHEET NO	OF	
CALCULATED BY	,	

0 (101) 220-0554	SHEET NO.	OF
	CALCULATED BY	DATE
PRE-TEVELOPMENT		
LATE A DECARRAGE		
WP. SPED = 19.06 AC		
	== cv = 73 ; C = 0,3	<u>S</u>
HOT AREA = 27.30	AC THE HELL	
AVG. GPASS	= GN =7/9 C=013	5
CN = 19,00(73)+(27,30 - 6.2	3) 71 + 71 96 \$2 72	HZE DEV
39.53 ====================================		
POST-TENELOPMENT		
WP AREA	-26	
IMPERV, DRED		
OPEN		4=0,9
	19.06 CN = 84	¢=0.35
VEOT AREA		
MIRERU DRED	5,50 (2) = 98	Z=0.9
OPEN	21.25 en=74	
	-6.28 = Front To	urse compre
4	20,47 EN=80	C = 0.50
OVERALL		
	39.53 cu=82	E = 0.33
PRE-DEV. 39,53 AC .		
TE-DEV. 39,53 AC; CA	J=72; c=0.35	
POST-DEV 39.53 AC ; C	U= 82 ; c= 0.33	

OALOUU ATED D		
SHEET NO.	OF_	
SUBJECT		
PROJECT NO.		
PROJECT		And the second s

		SHEET NO):	OF
		CALCULAT	TED BY	DATE
PETERMINE POTO WATE	ား လုပ	PLUTY	Vocome	leused Due to
TESIGN TYPE Y. TE	Taus t	FOR	ZYURS	ALDID VOOT
700 Y = 1" (13.18 AC		(43560°		METCAND
= 47,843 er				Provide 3:155
			السوال طفا	
TROVIDED 4 @ ELEV		 - - - - - - -		ct > 11,813cr
DETERMINE ORIFICE FO	24	HOOR	FELERSE	
OFFICE ELEV = 41.0				
TPY TO USE 4" (EXP	ZTING	PRIFICA		
A = Tr (2/2)2				
-0.087255				
Qe = CA Izgan		e =0,6		
=0.6(.0872) \Z(32,2).	762		2725E	
9,372 45	83	4	z ft/52 8.66 8.57 - 47.	0,83,
Op = 49,840 =				- 50.785
(X) Sec				
x = 49,240				
9-3120383 3-193778 5 -	36,2			
SIZE NEW WATER QUALI				
Q = 47.843 CF			cn 24 He	DETENTIONS
86,400 S	7,554 4			
Q2 = 0.6 (A) 12(322) +	795 .23	\$		
A = 0.1263 1 1299 SF 11	TOTAL CONTROL OF THE PARTY OF T			
1 = 0.200 - 2.41 H				
d = 4.20; < USE	41.	* EXIST	ING OPIFIC	CE 15 OF
H.62				
	سينسن برحمت حسيب			

PROJECT	
PROJECT NO	
SUBJECT	
SHEET NO	OF
CALCULATED BY	DATE

	CALCULATED BY	DATE
DETERMINE MODIFICA	TIONS LEEDED TO FONC	
BASIN;		
WP AREA = 19.00	AC	
PEQ. LZY VOLUME	= 9.06 AC (67 CT/AC) =	34480 CF
@ ELEV = 48,2	PROV. VOLUMO = 33967	24 4800 C 5000
@ ELE V = 49,33	PROV. VOLUME = 4244 - 4625	34448
REAL WET JOUWE :	34480 CF 2 36 134 CF	7 7 9 9
		
DE WET YOU'ME	1 = 48.2 FOR GHR D	RAWDOWN
Qe = 36.734c+		
21,600 5	1.70 cts	
Qe - CA VZgah		
	Q= 32,2 1/5 ²	
170crs = 0.6A 12(52)2) 0.57	
A = 0.468 5F =	7 2 1 2	-0.57
r = 0.39' = 4.6		***
d = 9.76 € c		
IF 4" (EX. DRIFICE) WAS		NOOND TIME:
Qp = 0.6 (0.085725=)) (Z(32,2)0,57 A= 11(3/12	
= 0.317 00	-0.08	
Q = 36,734 cf		
X = 36,734 cF		
- 115 823 S	32,2 Hz	

SHEET NO		OF_	
SUBJECT			
PROJECT NO). <u> </u>		
PROJECT		 <u> </u>	

	SHEET NO.		
	CALCULATED BY	DATE	
LUTI - SEEP COULES			
Ls = Y/2+4) (1+ S)			
0.25-5	& FROM VESCH		
	0.0042		
= (49.33 - 47.0) 3+4 (1	4		
<u> </u>	0,25 - (0,0042)/		
= 166 211 2 0%	INCREASE IN SEEPA		
	TROPERSO IT SEEPA	# CEN6T#\	
FROM PLOTE 314-12-5	USE 1 COULDE	/\\2\\\\	
OF VESCH			
	2 cousies	(42 4.21)	
DE 1 5.2 x5,2 ANTI=	SEEP COLLAR 1	4 Frant	
THE COUNSTREAM END	OF OUTLET BA	PREL -	
EMERGEIXY SPILLWAY DESIGN			
			
PER VIDOT, MP. JOHN DEWELL	EMERGENCY SPIL	TUDE Y STURB	
BE 20 WIDE AND LOCATED	ST ELEVATOR		
		520	
Q100 THEOUGH SPILLLUAY = F	51.11 ers 11111		
5-0.167 FT/FT			
N=0.0395(150) 16 : CLASS I	Jos III PER VES	ScH	
# F 0.04			
Qn = 0,04 (51.1)			
- 40 - 0104 (31.1)			
7.04			
1 0.5 V= 8.75 FPS			
512E SEDIMENT FOREGOY			
512E SEDIMENT FOREGOY			
REQUIRED VOLUME = 10% W			
	873 CF)		
= 41870			
PROVIDED VOLUME = 4888	4.787		

Hyd. No. 35

2-yr pre

Hydrograph type = Rational Storm frequency = 2 yrs Drainage area = 39.5 ac Drainage area
Intensity
I-D-F Curve

= 2.48 in

= JCChydrographs.IDF

Peak discharge = 34.28 cfsTime interval = 1 min Runoff coeff. = 1 mi = 0.35

Time of conc. (Tc) = 32 min Reced. limb factor = 2

Total Volume = 98,741 cuft

Time (hrs	Outflow cfs)	Time (hrs	Outflow cfs)	Time ((hrs	Outflow cfs)
0.07 0.08 0.10 0.12 0.13 0.15 0.17 0.18 0.20 0.22 0.23 0.25 0.27 0.28 0.30 0.32 0.33 0.35 0.37 0.40 0.42 0.43 0.45 0.47 0.48 0.50 0.52 0.53 0.55 0.57 0.58	4.29 5.36 6.43 7.50 8.57 9.64 10.71 11.79 12.86 13.93 15.00 16.07 17.14 18.21 19.29 20.36 21.43 22.50 23.57 24.64 25.71 26.79 27.86 28.93 30.00 31.07 32.14 33.21 34.28 << 33.75 33.21 32.68	0.60 0.62 0.63 0.65 0.67 0.68 0.70 0.72 0.73 0.75 0.77 0.78 0.80 0.82 0.83 0.85 0.87 0.92 0.93 0.92 0.93 1.00 1.02 1.03 1.05 1.07 1.08 1.10 1.12	32.14 31.61 31.07 30.54 30.00 29.46 28.93 27.86 27.32 26.79 26.25 25.71 25.18 24.64 24.11 23.57 23.04 22.50 21.96 21.43 20.89 20.36 19.82 19.29 18.75 18.21 17.68 17.14 16.61 16.07 15.54	1.13 1.15 1.17 1.18 1.20 1.22 1.23 1.25 1.27 1.28 1.30 1.32 1.33 1.35 1.37 1.38 1.40 1.42 1.43 1.45 1.47 1.48	15.00 14.46 13.93 13.39 12.86 12.32 11.79 11.25 10.18 9.11 8.57 8.04 7.50 6.43 5.89 5.36 4.82 4.29 3.75

Hyd. No. 36

10-yr pre

Hydrograph type = Rational Storm frequency = 10 yrs Drainage area = 39.5 ac Intensity = 3.52 in Drainage area
Intensity
I-D-F Curve

= JCChydrographs.IDF

Peak discharge = 48.64 cfs Time interval = 1 min Runoff coeff. = 0.35 Time of conc. (Tc) = 32 min

Reced. limb factor = 2

Total Volume = 140,076 cuft

Time	Outflow	Time -	- Outflow	Time	Outflow
(hrs	cfs)	(hrs	cfs)	(hrs	cfs)
0.07 0.08 0.10 0.12 0.13 0.15 0.17 0.18 0.20 0.22 0.23 0.25 0.27 0.28 0.30 0.32 0.33 0.35 0.37 0.38 0.40 0.42 0.43 0.45 0.47 0.48 0.50 0.52 0.53 0.55 0.57 0.58	6.08 7.60 9.12 10.64 12.16 13.68 15.20 16.72 18.24 19.76 21.28 22.80 24.32 25.84 27.36 28.88 30.40 31.92 33.44 34.96 36.48 38.00 39.52 41.04 42.56 44.08 45.60 47.12 48.64 47.88 47.12 46.36	0.60 0.62 0.63 0.65 0.67 0.68 0.70 0.72 0.73 0.75 0.77 0.80 0.82 0.83 0.85 0.87 0.90 0.92 0.93 0.95 0.97 0.98 1.00 1.02 1.03 1.05 1.07 1.08	45.60 44.84 44.08 43.32 42.56 41.80 41.04 40.28 39.52 38.76 38.70 37.24 36.48 35.72 34.96 34.20 33.44 32.68 31.92 31.16 30.40 29.64 28.88 28.12 27.36 26.60 25.84 25.08 24.32 23.56 22.80 22.04	1.13 1.15 1.17 1.18 1.20 1.22 1.23 1.25 1.27 1.28 1.30 1.32 1.33 1.35 1.37 1.38 1.40 1.42 1.43 1.45 1.47 1.48	21.28 20.52 19.76 19.00 18.24 17.48 16.72 15.20 14.44 13.92 12.16 11.40 10.64 9.88 9.12 8.36 7.60 6.84 6.08 5.32

Hyd. No. 37

25-yr pre

Hydrograph type = Rational Storm frequency = 25 yrs Drainage area = 39.5 ac Drainage area Intensity I-D-F Curve

= 4.08 in

= JCChydrographs.IDF

Peak discharge = 56.45 cfs Time interval = 1 mi Runoff coeff. = 0.35 = 1 min Time of conc. (Tc) = 32 min

Reced. limb factor = 2

Total Volume = 162,577 cuft

Time - (hrs	- Outflow cfs)	Time (hrs	Outflow cfs)	Time (hrs	Outflow cfs)
0.07 0.08 0.10 0.12 0.13 0.15 0.17 0.18 0.20 0.22 0.23 0.25 0.27 0.28 0.30 0.32 0.33 0.35 0.37 0.48 0.40 0.42 0.43 0.45 0.47 0.48 0.50 0.52 0.53 0.55 0.57 0.58	7.06 8.82 10.58 12.35 14.11 15.88 17.64 19.40 21.17 22.93 24.70 26.46 28.23 29.99 31.75 33.52 35.28 37.05 38.81 40.57 42.34 44.10 45.87 47.63 49.39 51.16 52.92 54.69 56.45 << 55.57 54.69 53.80	0.60 0.62 0.63 0.65 0.67 0.68 0.70 0.72 0.73 0.75 0.77 0.80 0.82 0.83 0.85 0.85 0.87 0.90 0.92 0.93 0.95 0.97 0.98 1.00 1.02 1.03 1.05 1.07 1.08	52.92 52.04 51.16 50.28 49.39 48.51 47.63 46.75 45.87 44.98 44.10 43.22 42.34 41.46 40.57 39.69 38.81 37.93 37.05 36.16 35.28 34.40 33.52 32.64 31.75 30.87 29.99 29.11 28.23 27.34 26.46 25.58	1.13 1.15 1.17 1.18 1.20 1.22 1.23 1.25 1.27 1.28 1.30 1.32 1.33 1.35 1.40 1.42 1.43 1.45 1.47 1.48	24.70 23.81 22.93 22.05 21.17 20.29 19.40 18.52 17.64 16.76 15.88 14.99 14.11 13.23 12.35 11.47 10.58 9.70 8.82 7.94 7.06 6.17

Hyd. No. 38

100-yr pre

Hydrograph type = Rational Storm frequency = 100 yrs Drainage area Intensity I-D-F Curve = 39.5 ac

= 4.98 in

= JCChydrographs.IDF

Peak discharge = 68.84 cfs Time interval = 1 min
Runoff coeff. = 0.35
Time of conc. (Tc) = 32 min
Reced. limb factor = 2

Total Volume = 198,266 cuft

Time	Outflow cfs)	Time -	- Outflow	Time	Outflow
(hrs		(hrs	cfs)	(hrs	cfs)
0.07 0.08 0.10 0.12 0.13 0.15 0.17 0.18 0.20 0.22 0.23 0.25 0.27 0.28 0.30 0.32 0.33 0.35 0.37 0.38 0.40 0.42 0.43 0.45 0.47 0.48 0.50 0.52 0.53 0.55 0.57 0.58	8.61 10.76 12.91 15.06 17.21 19.36 21.51 23.66 25.82 27.97 30.12 32.27 34.42 36.57 38.72 40.88 43.03 45.18 47.33 49.48 51.63 53.78 55.93 58.09 60.24 62.39 64.54 66.69 68.84 67.77 66.69 65.62	0.60 0.62 0.63 0.65 0.67 0.68 0.70 0.72 0.73 0.75 0.77 0.80 0.82 0.83 0.85 0.87 0.90 0.92 0.93 0.95 0.97 1.00 1.02 1.03 1.05 1.07 1.08	64.54 63.46 62.39 61.31 60.24 59.16 58.09 57.01 55.93 54.86 53.78 52.71 51.63 50.56 49.48 47.33 46.25 45.18 44.10 43.03 41.95 40.88 39.80 38.72 37.65 36.57 35.50 34.42 33.35 32.27 31.19	1.13 1.15 1.17 1.18 1.20 1.22 1.23 1.25 1.27 1.28 1.30 1.32 1.33 1.35 1.37 1.38 1.40 1.42 1.43 1.45 1.47 1.48	30.12 29.04 27.97 26.89 25.82 24.74 23.66 22.59 21.51 20.44 19.36 18.29 17.21 16.13 15.06 13.98 12.91 11.83 10.76 9.68 8.61 7.53

Hyd. No. 10

2 yr storm

Hydrograph type = Rational Storm frequency = 2 yrs Drainage area
Intensity
I-D-F Curve = 39.5 ac

= 2.88 in

= JCChydrographs.IDF

Peak discharge = 60.30 cfsTime interval = 1 min Runoff coeff. = 0.53 Time of conc. (Tc) = 25 min

Reced. limb factor = 2

Total Volume = 135,682 cuft

Time	Outflow	Time	Outflow	Time Outflow
(hrs	cfs)	(hrs	cfs)	(hrs cfs)
0.05 0.07 0.08 0.10 0.12 0.13 0.15 0.17 0.18 0.20 0.22 0.23 0.25 0.27 0.28 0.30 0.32 0.33 0.35 0.37 0.38 0.40 0.42 0.43 0.45 0.47 0.48 0.50 0.55 0.55 0.57	7.24 9.65 12.06 14.47 16.88 19.30 21.71 24.12 26.53 28.95 31.36 33.77 36.18 38.59 41.01 43.42 45.83 48.24 50.65 53.07 55.48 57.89 60.30 << 59.10 57.89 56.69 55.48 54.27 53.07 51.86 50.65 49.45	0.58 0.60 0.62 0.63 0.65 0.67 0.68 0.70 0.72 0.73 0.75 0.77 0.82 0.83 0.85 0.87 0.88 0.90 0.92 0.93 0.95 0.97 1.00 1.02 1.03 1.05 1.07 1.08 1.07	48.24 47.04 45.83 44.62 43.42 42.21 41.01 39.80 38.59 37.39 36.18 34.98 33.77 32.56 31.36 30.15 28.95 27.74 26.53 25.33 24.12 22.92 21.71 20.50 19.30 18.09 16.88 14.47 13.27 12.06 10.85	1.12 9.65 1.13 8.44 1.15 7.24 1.17 6.03End

Hyd. No. 11

10 yr storm

Hydrograph type = Rational Storm frequency = 10 yrs Drainage area = 39.5 ac Intensity = 4.04 in I-D-F Curve = JCChyd

= JCChydrographs.iDF

Peak discharge = 84.60 cfsTime interval = 1 min Runoff coeff. = 0.53 Time of conc. (Tc) = 25 min

Reced. limb factor = 2

Total Volume = 190,353 cuft

Time (hrs	- Outflow cfs)	Time (hrs	Outflow cfs)	Time Outflow (hrs cfs)	
0.05 0.07 0.08 0.10 0.12 0.13 0.15 0.17 0.18 0.20 0.22 0.23 0.25 0.27 0.28 0.30 0.32 0.33 0.35 0.37 0.42 0.43 0.42 0.43 0.45 0.47 0.48 0.50 0.55 0.57	10.15 13.54 16.92 20.30 23.69 27.07 30.46 33.84 37.22 40.61 43.99 47.38 50.76 54.14 57.53 60.91 64.30 67.68 71.07 74.45 77.83 81.22 84.60 << 82.91 81.22 79.53 77.83 76.14 74.45 72.76 71.07 69.37	0.58 0.60 0.62 0.63 0.65 0.67 0.68 0.70 0.72 0.73 0.77 0.78 0.80 0.82 0.83 0.85 0.87 0.88 0.90 0.92 0.93 0.95 0.97 0.98 1.00 1.02 1.03 1.05 1.07 1.08 1.07 1.08 1.07 1.08 1.09 1.00	67.68 65.99 64.30 62.60 60.91 59.22 57.53 55.84 54.14 52.45 50.76 49.07 47.38 45.68 43.99 42.30 40.61 38.92 37.22 35.53 33.84 32.15 30.46 28.76 27.07 25.38 23.69 22.00 20.30 18.61 16.92 15.23	1.12 13.54 1.13 11.84 1.15 10.15 1.17 8.46 End	1.13 1.15 1.17

Hyd. No. 12

25 yr storm

Hydrograph type = Rational Storm frequency = 25 yrs Drainage area = 39.5 ac Intensity = 4.66 in

Intensity = I-D-F Curve =

= JCChydrographs.IDF

Peak discharge = 97.63 cfs Time interval = 1 min Runoff coeff. = 0.53

Runoff coeff. = 0.53Time of conc. (Tc) = 25 min

Reced. limb factor = 2

Time -- Outflow

(hrs

1.12

1.13 1.15 1.17

...End

cfs)

15.62 13.67 11.72

9.76

Total Volume = 219,658 cuft

Time	Outflow	Time	Outflow
(hrs	cfs)	(hrs	cfs)
0.05 0.07 0.08 0.10 0.12 0.13 0.15 0.17 0.18 0.20 0.22 0.23 0.25 0.27 0.28 0.30 0.32 0.33 0.35 0.37 0.40 0.42 0.43 0.45 0.47 0.48 0.50 0.52 0.53 0.55 0.55 0.55 0.55 0.55 0.55 0.55	11.72 15.62 19.53 23.43 27.34 31.24 35.15 39.05 42.96 46.86 50.77 54.67 58.58 62.48 66.39 70.29 74.20 78.10 82.01 85.91 89.82 93.72 97.63 << 95.67 93.72 91.77 89.82 87.86 85.91 83.96 82.01 80.05	0.58 0.60 0.62 0.63 0.65 0.67 0.68 0.70 0.72 0.73 0.75 0.77 0.78 0.80 0.82 0.83 0.85 0.87 0.88 0.90 0.92 0.93 0.95 0.97 0.98 1.00 1.02 1.03 1.05 1.07 1.08 1.10	78.10 76.15 74.20 72.24 70.29 68.34 66.39 64.43 62.48 60.53 58.58 56.62 54.67 52.72 50.77 48.81 46.86 44.91 42.96 41.00 39.05 37.10 35.15 33.19 31.24 29.29 27.34 25.38 23.43 21.48 19.53 17.57

Hyd. No. 13

100 yr storm

Hydrograph type = Rational Storm frequency = 100 yrs Drainage area
Intensity
I-D-F Curve = 39.5 ac

= 5.64 in

= JCChydrographs.IDF

= 118.26 cfsPeak discharge

Time interval Runoff coeff. = 1 min = 0.53Time of conc. (Tc) = 25 min Reced. limb factor = 2

Total Volume = 266,082 cuft

Time (hrs	Outflow cfs)	Time (hrs	Outflow cfs)	Time Outflow (hrs cfs)
0.05 0.07 0.08 0.10 0.12 0.13 0.15 0.17 0.18 0.20 0.22 0.23 0.25 0.27 0.28 0.30 0.32 0.35 0.37 0.38 0.40 0.42 0.43 0.45 0.47 0.48 0.50 0.55 0.55 0.57	14.19 18.92 23.65 28.38 33.11 37.84 42.57 47.30 52.03 56.76 61.49 66.22 70.96 75.69 80.42 85.15 89.88 94.61 99.34 104.07 108.80 113.53 118.26 <<	0.58 0.60 0.62 0.63 0.65 0.67 0.68 0.70 0.72 0.73 0.75 0.77 0.78 0.80 0.82 0.83 0.85 0.87 0.88 0.90 0.92 0.93 0.95 0.97 0.98 1.00 1.02 1.03 1.05 1.07 1.08 1.10	94.61 92.24 89.88 87.51 85.15 82.78 80.42 78.05 75.69 73.32 70.96 68.59 66.22 63.86 61.49 59.13 56.76 54.40 52.03 49.67 47.30 44.94 42.57 40.21 37.84 35.48 33.11 30.75 28.38 26.02 23.65 21.29	1.12 18.92 1.13 16.56 1.15 14.19 1.17 11.83 End

Hyd. No. 1

2 YEAR PRE-DEV

Hydrograph type	= SCS Runoff			31.50 cfs
Storm frequency	= 2 yrs	Time interval	=	12 min
Drainage area	= 39.53 ac			72
Basin Šlope	= 3.7 %	,		1670 ft
Tc method	= LAG	Time of conc. (Tc)	=	31.7 min
Total precip.	= 3.50 in	Distribution	=	Type II
Storm duration	= 24 hrs	Shape factor	=	484

Total Volume = 150,792 cuft

Hydrograph Discharge Table

Hyd. No. 2

10 YEAR PRE-DEV

in

Total Volume = 380,772 cuft

Hydrograph Discharge Table

Time (hrs	Outflow cfs)
11.80 12.00 12.20 12.40 12.60 12.80 13.00 13.20 13.40	19.67 59.34 84.89 << 63.99 38.77 17.18 13.49 11.22 9.85
13.60	8.82

Hyd. No. 3

25 YEAR PRE-DEV

Hydrograph type	= SCS Runoff	Peak discharge	= 100.05 cfs
Storm frequency	= 25 yrs	Time interval	= 12 min
Drainage area	= 39.53 ac	Curve number	= 72
Basin Šlope	= 3.7 %	Hydraulic length	= 1670 ft
Tc method	= LAG	Time of conc. (Tc)	= 31.7 min
Total precip.	= 6.40 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Total Volume = 447,084 cuft

Hydrograph Discharge Table

Time	Outflow
(hrs	cfs)
11.80	24.18
12.00	70.79
12.20	100.05 <<
12.40	74.97
12.60	45.05
12.80	19.78
13.00	15.50
13.20	12.88
13.40	11.31
13.60	10.11

Hyd. No. 4

100 YEAR PRE-DEV

Hydrograph type Storm frequency	= 100 yrs	Time interval	= 141.70 cfs = 12 min = 72
Drainage area Basin Slope Tc method Total precip.	= 39.53 ac = 3.7 % = LAG = 8.00 in	Hydraulic length Time of conc. (Tc) Distribution	= 1670 ft = 31.7 min = Type II
Storm duration	= 24 hrs	Shape factor	= 484

Total Volume = 631,523 cuft

Hydrograph Discharge Table

12.40 104.96 12.60 62.08 12.80 26.77	Time (hrs	Outflow cfs)
13.00 20.93 13.20 17.34 13.40 15.20	12.00 12.20 12.40 12.60 12.80 13.00 13.20	102.57 141.70 << 104.96 62.08 26.77 20.93 17.34

Hyd. No. 5

2 YEAR POST-DEV

Hydrograph type	= SCS Runoff		53.61 cfs
Storm frequency	= 2 yrs		12 min
Drainage area	= 39.53 ac	Out to manner.	82
Basin Šlope	= 0.0 %		0 ft
Tc method	= USER	Time of conc. (Tc) =	25 min
Total precip.	= 3.50 in		Type II
Storm duration	= 24 hrs	Shape factor =	484

Total Volume = 239,807 cuft

Hydrograph Discharge Table

Time	Outflow
(hrs	cfs)
11.80	12.79
12.00	37.79
12.20	53.61 <<
12.40	40.24
12.60	24.24
12.80	10.67
13.00	8.37
13.20	6.96
13.40	6.11
13.60	5.46

Hyd. No. 6

10 YEAR POST-DEV

Hydrograph type	= SCS Runoff	Peak discharge	= 114.34 cfs
Storm frequency	= 10 yrs	Time interval	= 12 min
Drainage area	= 39.53 ac	Curve number	= 82
Basin Šlope	= 0.0 %	, , , a, a a	= 0 ft
Tc method	= USER	Time of conc. (Tc)	
Total precip.	= 5.80 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Total Volume = 511,676 cuft

Hydrograph Discharge Table

Time	Outflow
(hrs	cfs)
11.60	12.70
11.80	31.89
12.00	84.46
12.20	114.34 <<
12.40	83.83
12.60	48.88
12.80	20.75
13.00	16.17
13.20	13.38
13.40	11.71

Hyd. No. 7

25 YEAR POST-DEVELOPMENT

Hydrograph type	= SCS Runoff	Peak discharge	= 130.56 cfs
Storm frequency	= 25 yrs	Time interval	= 12 min
Drainage area	= 39.53 ac	Curve number	= 82
Basin Šlope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 25 min
Total precip.	= 6.40 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Total Volume = 586,080 cuft

Hydrograph Discharge Table

Time (hrs	Outflow cfs)
11.60	15.03
11.80	37.20
12.00	97.09
12.20	130.56 <<
12.40	95.39
12.60	55.36
12.80	23.37
13.00	18.20
13.20	15.05
13.40	13.16

Hyd. No. 8

100 YEAR POST DEVELOPMENT

Hydrograph type	= SCS Runoff	Peak discharge	= 206.85 cfs
Storm frequency	= 100 yrs	Time interval	= 12 min
Drainage area	= 47.00 ac	Curve number	= 82
Basin Šlope	= 0.0 %	117010101010101010101010101010101010101	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 25 min
Total precip.	= 8.00 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Total Volume = 937,249 cuft

Hydrograph Discharge Table

Time	Outflow
(hrs	cfs)
11.60	25.51
11.80	61.42
12.00	155.84
12.20	206.85 <<
12.40	150.13
12.60	86.32
12.80	36.07
13.00	28.05
13.20	23.16

Pond Routings

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Volume (cuft)	Return period (yrs)	Inflow hyd(s)	Maximum elevation (ft)	Maximum storage (cuft)	Hydrograph description	
1	SCS Runoff	31.5	12	732	150,792	2				2 YEAR PRE-DEV	1
2	SCS Runoff	84.9	12	732	380,772	10	****			10 YEAR PRE-DEV	SUS
3	SCS Runoff	100.0	12	732	447,084	25				25 YEAR PRE-DEV	1
4	SCS Runoff	141.7	12	732	631,523	100				100 YEAR PRE-DEV	
5	SCS Runoff	53.6	12	732	239,807	2	·			2 YEAR POST-DEV	
6	SCS Runoff	114.3	12	732	511,676	10				10 YEAR POST-DEV	
7	SCS Runoff	130.6	12	732	586,080	25				25 YEAR POST-DEV	EL .
8	SCS Runoff	206.8	12	732	937,249	100		An der man der man mer		100 YEAR POST DE	/E <u> </u>
10	Rational	60.3	1	25	135,682	2				2 yr storm	Ą
11	Rational	84.6	1	25	190,353	10				10 yr storm	RATIONAL
12	Rational	97.6	1	25	219,658	25				25 yr storm	
13	Rational	118.3	1	25	266,082	100				100 yr storm	4
15	Reservoir	29.9	12	756	239,748	2	5	50.18	95,481	2 YR POST DEV RO	υτ Α
16	Reservoir	97.0	12	744	511,617	10	6	51.21	130,529	10 YR POST DEV R	DU
17	Reservoir	109.0	12	744	586,023	25	7	51.43	138,316	25 YR POST DEV R	DU PERMINENT
18	Reservoir	173.7	12	744	937,193	100	8	52.90	192,702	100 YR POST DEV F	
20	Reservoir	28.0	1	52	106,524	2	10	50.14	94,184	2 YR POST DEV RO	UT BASIN
21	Reservoir	50.1	1	45	161,095	10	11	50.53	107,379	10 YR POST DEV R	ου ` \
22	Reservoir	62.1	1	43	190,366	25	12	50.72	113,675	25 YR POST DEV R	ou [
23	Reservoir	81.2	1	41	236,746	100	13	50.99	122,953	100 YR POST DEV F	20 <u> </u>
25	Reservoir	40.9	12	744	239,801	2	5	50.38	102,310	2 YR POST DEV RO	ит 🛕
26	Reservoir	97.9	12	744	511,670	10	6	51.22	130,984	10 YR POST DEV R	DU
S 27	Reservoir	109.1	12	744	586,076	25	7	51.44	138,761	25 YR POST DEV RO	DU GENARALT
28	Reservoir	173.7	12	744	937,246	100	8	52.90	192,705	100 YR POST DEV F	SO ENIME!
30	Reservoir	38.5	1	43	124,382	2	10	50.34	100,876	2 YR POST DEV RO	UT MALL
31	Reservoir	60.0	1	40	179,011	10	11	50.69	112,685	10 YR POST DEV R	on Mylu
32	Reservoir	71.7	1	38	208,300	25	12	50.86	118,487	25 YR POST DEV R	bu .
33	Reservoir	90.0	1	37	254,703	100	13	51.11	127,246	100 YR POST DEV F	10
35	Rational	34.3	1	32	98,741	2				2-yr pre	1
36	Rational	48.6	1	32	140,076	10				10-yr pre	RATIONAL
37	Rational	56.5	1	32	162,577	25				25-yr pre	
											*

Proj. file: 755506DRYRevised301. GPFVfile: JCChydrographs.IDF

Run date: 03-21-2001

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Volume (cuft)	Return period (yrs)	Inflow hyd(s)	Maximum elevation (ft)	Maximum storage (cuft)	Hydrograph description
38	Rational	68.8	1	32	198,266	100				100-yr pre
							11.5			
	,									
			:							

Proj. file: 755506DRYRevised301. GPFVfile: JCChydrographs.IDF

Run date: 03-21-2001

Permanent SWM Facility

Reservoir No. 1 - REVISED POND MARCH 2001

Pond Data

Pond storage is based on known contour areas

Stage / Storage Table

0.00 46.99 00 0 0 0.01 47.00 26,777 134 134 1.01 48.00 28,942 27,860 27,994 2.01 49.00 30,783 29,863 57,857 3.01 50.00 32,631 31,707 89,564 4.01 51.00 34,550 33,591 123,155 5.01 52.00 36,751 35,651 158,806 6.01 53.00 38,705 37,728 196,534 7.01 54.00 40,847 39,776 236,310	Stage ft	Elevation ft	Contour area sqft	Incr. Storage cuft	Total storage cuft
	0.01 1.01 2.01 3.01 4.01 5.01 6.01	47.00 48.00 49.00 50.00 51.00 52.00 53.00	26,777 28,942 30,783 32,631 34,550 36,751 38,705	134 27,860 29,863 31,707 33,591 35,651 37,728	27,994 57,857 89,564 123,155 158,806 196,534

Culvert / C	rifice Stru	ctures			Weir Struc	tures			
	[A]	[B]	[C]	[D]		[A]	[B]	[C]	[D]
Rise in	= 42.0	4.0	0.0	0.0	Crest Len ft	= 12.5	20.0	0.0	0.0
Span in	= 42.0	4.0	0.0	0.0	Crest El. ft	= 49.33	52.00	0.00	0.00
No. Barrels	= 1	1	0	0	Weir Coeff.	= 3.00	3.00	0.00	0.00
Invert El. ft	= 44.14	47.00	0.00	0.00	Eqn. Exp.	= 1.50	1.50	0.00	0.00
Length ft	= 45.0	0.5	0.0	0.0	Multi-Stage	= Yes	No	No	No
Slope %	= 0.42	0.00	0.00	0.00					
N-Value	= .013	.013	.013	.000					
Orif. Coeff.	= 0.60	0.60	0.60	0.00					
Multi-Stage	=	Yes	Yes	No	Tailwater Ele	vation = 4	45.70 ft		

Stage / Storage / Discharge Table

Note: All outflows have been analyzed under inlet and outlet control.

Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	Clv D cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Discharge cfs
0.00	0	46.99	22.69	0.00			0.00	0.00			0.00
0.00	13	46.99	46.44	0.00			0.00	0.00			0.00
0.00	27	46.99	46.45	0.00			0.00	0.00			0.00
0.00	40	46.99	46.47	0.00			0.00	0.00			0.00
0.00	54	46.99	46.49	0.00			0.00	0.00			0.00
0.00	67	46.99	46.51	0.00			0.00	0.00			0.00
0.01	80	47.00	46.53	0.00			0.00	0.00			0.00
0.01	94	47.00	46.54	0.00			0.00	0.00			0.00
0.01	107	47.00	46.56	0.00			0.00	0.00			0.00
0.01	121	47.00	46.58	0.00			0.00	0.00			0.00
0.01	134	47.00	46.60	0.00			0.00	0.00			0.00

REVISED POND MARCH 2001 Stage / Storage / Discharge Table

0.11 2.920 47.10 49.83 0.02 — 0.00 0.00 — 0.02 0.21 5.706 47.20 52.89 0.09 — 0.00 0.00 — 0.15 0.41 11.278 47.40 57.56 0.20 — 0.00 0.00 — 0.20 0.51 14.064 47.50 59.50 0.23 — 0.00 0.00 — 0.23 0.61 16.850 47.60 66.83 0.28 — 0.00 0.00 — 0.23 0.71 19.636 47.70 62.32 0.31 — 0.00 0.00 — 0.31 0.81 22.422 47.80 65.67 0.36 — 0.00 0.00 — 0.33 1.01 27.94 48.00 67.28 0.38 — 0.00 0.00 — 0.38 1.11 30.980 48.10 68.86 0.41 — <	Stage ft	Storage cuft	Elevation ft	Clv A cfs	CIv B cfs	Clv C cfs	Clv D cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Discharge cfs
0.21 5,706 47.20 52.89 0.09 — 0.00 0.00 — 0.015 0.41 11,278 47.40 55.50 0.20 — 0.00 0.00 — 0.15 0.41 11,278 47.40 57.56 0.20 — 0.00 0.00 0.00 — 0.23 0.61 16,850 47.60 60.83 0.23 — 0.00 0.00 — 0.23 0.61 16,850 47.60 60.83 0.28 — 0.00 0.00 — 0.23 0.61 19,636 47.70 62.32 0.31 — 0.00 0.00 — 0.23 0.71 19,636 47.70 62.32 0.31 — 0.00 0.00 — 0.33 0.91 25,208 47.90 65.67 0.36 — 0.00 0.00 — 0.33 0.91 25,208 47.90 65.67 0.36 — 0.00 0.00 — 0.33 0.91 12,422 47.80 64.01 0.33 — 0.00 0.00 — 0.33 0.91 25,208 47.90 68.80 0.41 — 0.00 0.00 — 0.33 1.11 30,939 48.10 68.86 0.41 — 0.00 0.00 — 0.43 1.31 36,953 48.30 71.91 0.45 — 0.00 0.00 — 0.44 1.31 36,953 48.30 71.91 0.45 — 0.00 0.00 — 0.44 1.41 39,99 48.40 73.38 0.47 — 0.00 0.00 — 0.47 1.51 42,926 48.50 74.83 0.49 — 0.00 0.00 — 0.47 1.51 42,926 48.50 76.50 5.50 — 0.00 0.00 — 0.47 1.51 42,826 48.50 76.50 5.50 — 0.00 0.00 — 0.55 1.71 48,898 48.70 77.65 0.52 — 0.00 0.00 — 0.55 1.81 51,884 48.80 79.02 0.54 — 0.00 0.00 — 0.55 1.81 51,884 48.90 80.36 0.55 — 0.00 0.00 — 0.55 1.81 61,028 49.10 82.99 0.58 — 0.00 0.00 — 0.55 1.91 54,871 48.90 80.36 0.55 — 0.00 0.00 — 0.55 1.91 57,857 49.00 81.69 0.57 — 0.00 0.00 — 0.55 1.91 57,857 49.00 81.69 0.57 — 0.00 0.00 — 0.55 1.91 57,857 49.00 86.78 0.63 — 0.00 0.00 — 0.55 1.91 61,028 49.10 82.99 0.58 — 0.00 0.00 — 0.55 1.91 57,857 49.00 80.80 0.55 — 0.00 0.00 — 0.55 1.91 57,857 49.00 80.70 80.71 — 0.00 0.00 — 0.57 1.91 68.81 49.60 88.21 6.66 — 5.26 0.00 — 0.57 1.91 68.81 49.60 88.22 6.66 — 5.26 0.00 — 0.12 2.51 73,711 49.50 88.01 6.64 — 2.63 0.00 — 0.12 2.51 73,711 49.50 88.01 0.64 — 2.63 0.00 — 1.27 2.61 76,881 49.60 89.22 6.66 — 5.26 0.00 — 1.27 2.81 83,223 49.80 91.59 0.68 — 12.08 0.00 — 12.76 3.81 19,765 0.50 10.59 0.77 — 47.46 0.00 — 12.76 3.81 19,765 0.50 10.59 0.77 — 47.46 0.00 — 12.76 3.81 19,765 0.50 10.59 0.00 10.59 0.00 — 12.76 3.81 19,765 0.50 10.59 0.00 10.59 0.00 — 12.76 3.91 119,796 5.00 10.59 0.00 10.59 0.00 — 12.76 3.91 119,796 5.00 10.55 0.00 10.55 0.00 — 12.85 3.91 119,796 5.00 10.55 0.00 10.55 0.00 — 12.85 3.91 119,796 5.00 10.55 0	0.11	2.920	47.10	49.83	0.02			0.00	0.00			0.02
0.31									0.00			0.09
0.41									0.00			
0.61 16/850 47.50 60.83 0.28	0.41		47.40		0.20				0.00			
0.71 19 636 47.70 62 32 0.31		14,064	47.50	59.30								
0.91 22,222 47,80 65,67 0.33 0.00 0.00 0.38 0.91 25,208 47,90 65,67 0.38 0.00 0.00 0.38 1.01 27,994 48,00 67,28 0.38 0.00 0.00 0.38 1.11 30,980 48,10 68,86 0.41 0.00 0.00 0.41 1.21 33,967 48,20 70,40 0.43 0.00 0.00 0.43 1.31 36,953 48,40 73,38 0.47 0.00 0.00 0.45 1.41 39,939 48,40 73,38 0.47 0.00 0.00 0.47 1.51 42,926 48,50 77,65 0.52 0.00 0.00 0.50 1.81 51,848 48,80 79,02				60.83								
0.91 25,208 47,90 65,67 0.36 — 0.00 0.00 — 0.36 1.01 27,994 48,00 67,28 0.38 — 0.00 0.00 — 0.38 1.11 30,980 48,10 68,86 0.41 — 0.00 0.00 — 0.41 1.21 33,967 48,20 70,40 0.43 — 0.00 0.00 — 0.43 1.31 36,953 48,30 71,91 0.45 — 0.00 0.00 — 0.45 1.41 39,939 48,40 73,38 0.47 — 0.00 0.00 — 0.47 1.51 42,926 48,50 77,83 0.49 — 0.00 0.00 — 0.47 1.61 48,91 48,60 76,25 0.52 — 0.00 0.00 — 0.52 2.01 57,857 49,00 8169 0.57 —												
1.01 27/994 48/00 67/28 0/38 — 0.00 0.00 — 0.38 1.11 30,980 48.10 68.86 0.41 — 0.00 0.00 — 0.41 1.21 33,967 48.20 70.40 0.43 — 0.00 0.00 — 0.43 1.31 36,953 48.30 71.91 0.45 — 0.00 0.00 — 0.45 1.41 39,939 48.40 73.38 0.47 — 0.00 0.00 — 0.47 1.51 42,926 48.50 76.25 0.50 — 0.00 0.00 — 0.49 1.61 45,912 48.60 76.25 0.50 — 0.00 0.00 — 0.50 1.71 48.898 48.70 77.65 0.52 — 0.00 0.00 — 0.52 1.81 51,884 48.80 80.36 0.55 — 0.00 0.00 — 0.52 2.01 57,857 49.00 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>												
1												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												
1.41 39,939 48,40 73,38 0.47 — 0.00 0.00 — 0.49 1.51 42,926 48,50 74,83 0.49 — 0.00 0.00 — 0.49 1.61 45,912 48,60 76,25 0.50 — 0.00 0.00 — 0.50 1.71 48,898 48,70 77,65 0.52 — 0.00 0.00 — 0.52 1.81 51,884 48,80 79,02 0.54 — 0.00 0.00 — 0.52 1.91 54,871 48,90 80.36 0.55 — 0.00 0.00 — 0.55 2.01 57,857 49,00 81,69 0.57 — 0.00 0.00 — 0.52 2.11 61,028 49,10 82,99 0.58 — 0.00 0.00 — 0.60 2.21 64,198 49,20 86,78 0.63 — 0.00 0.00 — 0.60 2.31 67,369 49,30 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												
1.71 48,998 48.70 77.65 0.52 — 0.00 0.00 — 0.52 1.81 51,884 48.80 79.02 0.54 — 0.00 0.00 — 0.54 1.91 54,871 48.90 80.36 0.55 — 0.00 0.00 — 0.55 2.01 57,857 49.00 81.69 0.57 — 0.00 0.00 — 0.57 2.11 61,028 49.10 82.99 0.58 — 0.00 0.00 — 0.60 2.21 64,198 49.20 84.27 0.60 — 0.00 0.00 — 0.60 2.31 67,369 49.30 85.53 0.61 — 0.09 0.00 — 0.61 2.41 70,540 49.40 86.78 0.63 — 0.69 0.00 — 1.32 2.51 73,711 49.50 88.01 0.64 — 2.63 0.00 — 5.92 2.71 80.052 49.70 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>												
1.81 51,884 48.80 79.02 0.54 — 0.00 0.00 — 0.54 1.91 54,871 48.90 80.36 0.55 — 0.00 0.00 — 0.55 2.01 57,857 49.00 81.69 0.57 — 0.00 0.00 — 0.58 2.21 64,198 49.20 84.27 0.60 — 0.00 0.00 — 0.60 2.31 67,369 49.30 85.53 0.61 — 0.00 0.00 — 0.61 2.41 70,540 49.40 86.78 0.63 — 0.69 0.00 — 1.32 2.51 73,711 49.50 88.01 0.64 — 2.63 0.00 — 3.27 2.61 76,881 49.60 89.22 0.66 — 5.26 0.00 — 5.92 2.71 80,052 49.70 90.41 0.67 — 8.44 0.00 — 12.76 2.81 83,223 49.80 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
1.91 54,871 48.90 80.36 0.55 — 0.00 0.00 — 0.57 2.01 57,857 49.00 81.69 0.57 — 0.00 0.00 — 0.57 2.11 61,028 49.10 82.99 0.58 — 0.00 0.00 — 0.58 2.21 64,198 49.20 84.27 0.60 — 0.00 0.00 — 0.60 2.31 67,369 49.30 85.53 0.61 — 0.00 0.00 — 0.61 2.41 70,540 49.40 86.78 0.63 — 0.69 0.00 — 1.32 2.51 73,711 49.50 88.01 0.64 — 2.63 0.00 — 3.27 2.61 76,881 49.60 89.22 0.66 — 5.26 0.00 — 9.11 2.81 83,223 49.80 91.59 0.68 — 12.08 0.00 — 12.76 2.91 86,393 49.90 <												
2.01 57,857 49.00 81.69 0.57												
2.11 61,028 49.10 82.99 0.58												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									0.00			
2.31 67,369 49.30 85.53 0.61 — 0.00 0.00 — 0.61 2.41 70,540 49.40 86.78 0.63 — 0.69 0.00 — — 3.27 2.61 76,881 49.60 89.22 0.66 — 5.26 0.00 — — 5.92 2.71 80,052 49.70 90.41 0.67 — 8.44 0.00 — 9.11 2.81 83,223 49.80 91.59 0.68 — 12.08 0.00 — 16.83 3.01 89,564 50.00 92.82 0.71 — 20.57 0.00 — 21.27 3.11 92,923 50.10 94.62 0.72 — 25.34 0.00 — 21.27 3.41 103,000 50.40 98.37 0.76 — 31.16 33.43 0.00 — 36.57 3.41 103,000 50.40 98.37 0.76 — 41.51 0.00 — 42.26												
2.51 73,711 49.50 88.01 0.64								0.00				
2.61 76,881 49.60 89.22 0.66		70,540	49.40	86.78	0.63							
2.71 80,052 49.70 90.41 0.67 — 8.44 0.00 — — 9.11 2.81 83,223 49.80 91.59 0.68 — — 12.08 0.00 — — 12.76 2.91 86,393 49.90 92.75 0.69 — — 16.14 0.00 — — 16.83 3.01 89,564 50.00 92.82 0.71 — — 20.57 0.00 — 21.27 3.11 92,923 50.10 94.62 0.72 — — 25.34 0.00 — 26.06 3.21 96,282 50.20 96.16 0.73 — 30.43 0.00 — 31.16 3.31 99,641 50.30 97.27 0.74 — 35.82 0.00 — 36.57 3.41 103,000 50.40 98.37 0.76 — 41.51 0.00 — 42.26 3.51 106,360 50.50 99.45 0.77 — 47.46 0.				88.01								
2.81 83,223 49.80 91.59 0.68												
2.91 86,393 49,90 92.75 0.69 16.14 0.00 16.83 3.01 89,564 50.00 92.82 0.71 20.57 0.00 21.27 3.11 92,923 50.10 94.62 0.72 25.34 0.00 26.06 3.21 96,282 50.20 96.16 0.73 30.43 0.00 26.06 3.31 99,641 50.30 97.27 0.74 35.82 0.00 36.57 3.41 103,000 50.40 98.37 0.76 41.51 0.00 42.26 3.51 106,360 50.50 99.45 0.77 47.46 0.00 48.22 3.61 109,719 50.60 100.53 0.78 53.67 0.00 48.22												
3.01 89,564 50.00 92.82 0.71 20.57 0.00 21.27 3.11 92,923 50.10 94.62 0.72 25.34 0.00 26.06 3.21 96,282 50.20 96.16 0.73 30.43 0.00 31.16 3.31 99,641 50.30 97.27 0.74 35.82 0.00 36.57 3.41 103,000 50.40 98.37 0.76 41.51 0.00 42.26 3.51 106,360 50.50 99.45 0.77 47.46 0.00 48.22 3.61 109,719 50.60 100.53 0.78 60.13 0.00 60.91 3.81 116,437 50.80 102.64 0.75 66.83 0.00 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>												
3.11 92,923 50.10 94.62 0.72 25.34 0.00 26.06 3.21 96,282 50.20 96.16 0.73 30.43 0.00 31.16 3.31 99,641 50.30 97.27 0.74 35.82 0.00 36.57 3.41 103,000 50.40 98.37 0.76 41.51 0.00 42.26 3.51 106,360 50.50 99.45 0.77 47.46 0.00 48.22 3.61 109,719 50.60 100.53 0.78 53.67 0.00 54.45 3.71 113,078 50.70 101.59 0.78 60.13 0.00 60.91 3.81 116,437 50.80 102.64 0.75 66.83 0.00 <												
3.21 96,282 50.20 96.16 0.73												
3.31 99,641 50.30 97.27 0.74 35.82 0.00 36.57 3.41 103,000 50.40 98.37 0.76 41.51 0.00 42.26 3.51 106,360 50.50 99.45 0.77 47.46 0.00 48.22 3.61 109,719 50.60 100.53 0.78 53.67 0.00 54.45 3.71 113,078 50.70 101.59 0.78 60.13 0.00 60.91 3.81 116,437 50.80 102.64 0.75 66.83 0.00 67.59 3.91 119,796 50.90 103.68 0.71 66.83 0.00 74.48 4.01 126,720 51.10 105.73 0.61 80.93 0.00 88.92												
3.41 103,000 50.40 98.37 0.76 41.51 0.00 42.26 3.51 106,360 50.50 99.45 0.77 47.46 0.00 48.22 3.61 109,719 50.60 100.53 0.78 53.67 0.00 54.45 3.71 113,078 50.70 101.59 0.78 60.13 0.00 60.91 3.81 116,437 50.80 102.64 0.75 66.83 0.00 67.59 3.91 119,796 50.90 103.68 0.71 73.77 0.00 74.48 4.01 123,155 51.00 104.71 0.67 80.93 0.00 81.60 4.11 126,720 51.10 105.73 0.61 88.31 0.00 88.92 4.21 130,285												
3.51 106,360 50.50 99.45 0.77 47.46 0.00 48.22 3.61 109,719 50.60 100.53 0.78 53.67 0.00 54.45 3.71 113,078 50.70 101.59 0.78 60.13 0.00 60.91 3.81 116,437 50.80 102.64 0.75 66.83 0.00 67.59 3.91 119,796 50.90 103.68 0.71 68.83 0.00 67.59 3.91 119,796 50.90 103.68 0.71 73.77 0.00 74.48 4.01 123,155 51.00 104.71 0.67 80.93 0.00 81.60 4.11 126,720 51.10 105.73 0.61 88.31 0.00												
3.61 109,719 50.60 100.53 0.78 53.67 0.00 54.45 3.71 113,078 50.70 101.59 0.78 60.13 0.00 60.91 3.81 116,437 50.80 102.64 0.75 66.83 0.00 67.59 3.91 119,796 50.90 103.68 0.71 73.77 0.00 74.48 4.01 123,155 51.00 104.71 0.67 80.93 0.00 74.48 4.11 126,720 51.10 105.73 0.61 88.31 0.00 88.92 4.21 130,285 51.20 106.74 0.54 95.89 0.00 96.43 4.31 133,850 51.30 107.74 0.44 103.69 0.00 <td></td>												
3.71 113,078 50.70 101.59 0.78 60.13 0.00 60.91 3.81 116,437 50.80 102.64 0.75 66.83 0.00 67.59 3.91 119,796 50.90 103.68 0.71 73.77 0.00 74.48 4.01 123,155 51.00 104.71 0.67 80.93 0.00 74.48 4.01 123,155 51.00 105.73 0.61 80.93 0.00 81.60 4.11 126,720 51.10 105.73 0.61 88.31 0.00 88.92 4.21 130,285 51.20 106.74 0.54 95.89 0.00 103.69 0.00 104.12 4.41 137,415 51.40 108.73 0.28 <td></td> <td>54.45</td>												54.45
3.81 116,437 50.80 102.64 0.75 66.83 0.00 67.59 3.91 119,796 50.90 103.68 0.71 73.77 0.00 74.48 4.01 123,155 51.00 104.71 0.67 80.93 0.00 81.60 4.11 126,720 51.10 105.73 0.61 88.31 0.00 88.92 4.21 130,285 51.20 106.74 0.54 95.89 0.00 96.43 4.31 133,850 51.30 107.74 0.44 103.69 0.00 104.12 4.41 137,415 51.40 108.73 0.28 111.68 0.00 109.71 4.61 144,546 51.60 110.68 0.00 128.25 0.00												
4.01 123,155 51,00 104.71 0.67 80.93 0.00 81.60 4.11 126,720 51,10 105.73 0.61 88.31 0.00 88.92 4.21 130,285 51,20 106.74 0.54 95.89 0.00 96.43 4.31 133,850 51,30 107.74 0.44 103.69 0.00 104.12 4.41 137,415 51,40 108.73 0.28 111.68 0.00 108.73 4.51 140,980 51.50 109.71 0.00 119.87 0.00 109.71 4.61 144,546 51.60 110.68 0.00 128.25 0.00 110.68 4.71 148,111 51.70 111.65 0.00 136.82 0.00 <td< td=""><td>3.81</td><td>116,437</td><td></td><td>102.64</td><td></td><td></td><td></td><td></td><td>0.00</td><td></td><td></td><td></td></td<>	3.81	116,437		102.64					0.00			
4.11 126,720 51.10 105.73 0.61 88.31 0.00 88.92 4.21 130,285 51.20 106.74 0.54 95.89 0.00 96.43 4.31 133,850 51.30 107.74 0.44 103.69 0.00 104.12 4.41 137,415 51.40 108.73 0.28 111.68 0.00 108.73 4.51 140,980 51.50 109.71 0.00 119.87 0.00 109.71 4.61 144,546 51.60 110.68 0.00 128.25 0.00 110.68 4.71 148,111 51.70 111.65 0.00 136.82 0.00 111.65 4.81 151,676 51.80 112.61 0.00 154.50 <t< td=""><td></td><td></td><td>50.90</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			50.90									
4.21 130,285 51,20 106,74 0.54 95.89 0.00 96.43 4.31 133,850 51,30 107,74 0.44 103,69 0.00 104,12 4.41 137,415 51,40 108,73 0.28 111,68 0.00 108,73 4.51 140,980 51,50 109,71 0.00 119,87 0.00 109,71 4.61 144,546 51,60 110,68 0.00 128,25 0.00 110,68 4.71 148,111 51,70 111,65 0.00 136,82 0.00 111,65 4.81 151,676 51,80 112,61 0.00 145,57 0.00 112,61 4.91 155,241 51,90 113,55 0.00 154,50												
4.31 133,850 51.30 107.74 0.44 103.69 0.00 104.12 4.41 137,415 51.40 108.73 0.28 111.68 0.00 108.73 4.51 140,980 51.50 109.71 0.00 119.87 0.00 109.71 4.61 144,546 51.60 110.68 0.00 128.25 0.00 110.68 4.71 148,111 51.70 111.65 0.00 136.82 0.00 111.65 4.81 151,676 51.80 112.61 0.00 145.57 0.00 112.61 4.91 155,241 51.90 113.55 0.00 154.50 0.00 113.55 5.01 158,806 52.00 114.50 0.00 163.61		126,720										
4.41 137,415 51,40 108,73 0.28 111,68 0.00 108,73 4.51 140,980 51,50 109,71 0.00 119,87 0.00 109,71 4.61 144,546 51,60 110,68 0.00 128,25 0.00 110,68 4.71 148,111 51,70 111,65 0.00 136,82 0.00 111,65 4.81 151,676 51,80 112,61 0.00 145,57 0.00 112,61 4.91 155,241 51,90 113,55 0.00 154,50 0.00 113,55 5.01 158,806 52,00 114,50 0.00 163,61 0.00 117,33 5.11 162,579 52,10 115,43 0.00 172,88												
4.51 140,980 51.50 109.71 0.00 119.87 0.00 109.71 4.61 144,546 51.60 110.68 0.00 128.25 0.00 110.68 4.71 148,111 51.70 111.65 0.00 136.82 0.00 111.65 4.81 151,676 51.80 112.61 0.00 145.57 0.00 112.61 4.91 155,241 51.90 113.55 0.00 154.50 0.00 113.55 5.01 158,806 52.00 114.50 0.00 163.61 0.00 117.33 5.11 162,579 52.10 115.43 0.00 172.88 1.90 117.33												
4.61 144,546 51.60 110.68 0.00 128.25 0.00 110.68 4.71 148,111 51.70 111.65 0.00 136.82 0.00 111.65 4.81 151,676 51.80 112.61 0.00 145.57 0.00 112.61 4.91 155,241 51.90 113.55 0.00 154.50 0.00 113.55 5.01 158,806 52.00 114.50 0.00 163.61 0.00 117.33 5.11 162,579 52.10 115.43 0.00 172.88 1.90 117.33												
4.71 148,111 51.70 111.65 0.00 136.82 0.00 111.65 4.81 151,676 51.80 112.61 0.00 145.57 0.00 112.61 4.91 155,241 51.90 113.55 0.00 154.50 0.00 113.55 5.01 158,806 52.00 114.50 0.00 163.61 0.00 114.50 5.11 162,579 52.10 115.43 0.00 172.88 1.90 117.33												
4.81 151,676 51.80 112.61 0.00 145.57 0.00 112.61 4.91 155,241 51.90 113.55 0.00 154.50 0.00 113.55 5.01 158,806 52.00 114.50 0.00 163.61 0.00 114.50 5.11 162,579 52.10 115.43 0.00 172.88 1.90 117.33												
4.91 155,241 51.90 113.55 0.00 154.50 0.00 113.55 5.01 158,806 52.00 114.50 0.00 163.61 0.00 114.50 5.11 162,579 52.10 115.43 0.00 172.88 1.90 117.33												
5.01 158,806 52.00 114.50 0.00 163.61 0.00 114.50 5.11 162,579 52.10 115.43 0.00 172.88 1.90 117.33												
5.11 162,579 52.10 115.43 0.00 172.88 1.90 117.33												114.50
												117.33
	5.21	166,352	52.20	116.35	0.00			182.33	5.37			121.72
5.31 170,124 52.30 117.27 0.00 191.94 9.86 127.13	5.31	170,124	52.30	117.27	0.00			191.94	9.86			127.13

REVISED POND MARCH 2001 **Stage / Storage / Discharge Table**

Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	Clv D cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Discharge cfs
5.41	173,897	52.40	118.18	0.00			201.71	15.18			133.36
5.51	177,670	52.50	119.09	0.00			211.65	21.21			140.30
5.61	181,443	52.60	119.99	0.00			221.74	27.88			147.87
5.71	185,216	52.70	120.88	0.00			231.99	35.14			156.01
5.81	188,988	52.80	121.76	0.00			242.39	42.93			164.69
5.91	192,761	52.90	122.64	0.00			252.95	51.23			173.87
6.01	196,534	53.00	123.51	0.00			263.65	60.00			183.51
6.11	200,512	53.10	124.38	0.00			274.50	69.22			193.60
6.21	204,489	53.20	125.23	0.00			285.49	78.87			204.11
6.31	208,467	53.30	126.09	0.00			296.63	88.93			215.02
6.41	212,444	53.40	126.94	0.00			307.91	99.39			226.33
6.51	216,422	53.50	127.78	0.00			319.33	110.23			238.00
6.61	220,400	53.60	128.62	0.00			330.88	121.43			250.05
6.71	224,377	53.70	129.45	0.00			342.57	132.99			262.44
6.81	228,355	53.80	130.27	0.00			354.40	144.90			275.17
6.91	232,332	53.90	131.09	0.00			366.36	157.14			288.23
7.01	236,310	54.00	131.91	0.00			378.45	169.71			301.62

Hydrograph Report

English

Hyd. No. 15

2 YR POST DEV ROUTED

Hydrograph type = Reservoir Storm frequency = 2 yrs Inflow hyd. No. = 5

Max. Elévation $= 50.18 \, ft$ Peak discharge = 29.94 cfsTime interval

= 12 min

Reservoir name = REVISED POND MA

Max. Storage = 95,481 cuft

Storage Indication method used.

Total Volume = 239,748 cuft

Hydrograph Discharge Table

Time (hrs)	Inflow cfs	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	Clv D cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Outflow cfs
12.40	40.24	50.07	94.07	0.72			23.89				24.60
12.60	24.24	50.18	95.80	0.73			29.22				29.94 <<
12.80	10.67	50.00	92.84	0.71			20.61				21.32
13.00	8.37	49.82	91.83	0.68			12.92				13.61
13.20	6.96	49.73	90.72	0.67			9.39				10.06
13.40	6.11	49.67	90.03	0.66			7.43				8.09
13.60	5.46	49.63	89.57	0.66			6.21				6.87
13.80	4.93	49.60	89.24	0.66			5.32				5.98
14.00	4.49	49.58	88.97	0.65			4.73				5.38
14.20	4.10	49.56	88.74	0.65			4.23				4.88
14.40	3.81	49.54	88.55	0.65			3.81				4.45
14.60	3.61	49.53	88.39	0.65			3.47				4.11
14.80	3.46	49.52	88.27	0.64			3.20				3.85
15.00	3.33	49.51	88.18	0.64			3.00				3.64
15.20	3.20	49.51	88.10	0.64			2.82				3.47
15.40	3.06	49.50	88.03	0.64			2.67				3.31
15.60	2.92	49.50	87.95	0.64			2.54				3.19
15.80	2.78	49.49	87.88	0.64			2.43				3.07

Hyd. No. 16

10 YR POST DEV ROUTED

Hydrograph type = Reservoir Storm frequency = 10 yrs Inflow hyd. No. = 6

Max. Elevation

 $= 51.21 \, ft$

Peak discharge

= 96.95 cfs

Time interval = 12 min

= REVISED POND MA Reservoir name

Max. Storage = 130,529 cuft

Storage Indication method used.

Total Volume = 511,617 cuft

Hydrograph Discharge Table

Time (hrs)	Inflow cfs	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	Clv D cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Outflow cfs
12.00	84.46	50.07	94.07	0.72			23.87				24.58
12.20	114.34 <<	< 51.03	105.05	0.65			83.40				84.05
12.40	83.83	51.21 <<	106.80	0.53			96.43				96.95 <<
12.60	48.88	50.85	103.11	0.73			69.96				70.69
12.80	20.75	50.39	98.24	0.75			40.82				41.58
13.00	16.17	50.07	94.13	0.72	++		24.04				24.75
13.20	13.38	49.93	92.77	0.70			17.33				18.03
13.40	11.71	49.84	92.09	0.69			13.80				14.49
13.60	10.44	49.79	91.46	0.68			11.68				12.36
13.80	9.41	49.75	91.00	0.68			10.26				10.93
14.00	8.54	49.72	90.63	0.67			9.11				9.78

Hyd. No. 17

25 YR POST DEV ROUTED

Hydrograph type = Reservoir Storm frequency = 25 yrs Inflow hyd. No. = 7

Max. Elevation = 51.43 ft Peak discharge

= 108.98 cfs

Time interval

= 12 min

Reservoir name

= REVISED POND MA

Max. Storage

= 138,316 cuft

Storage Indication method used.

Total Volume = 586,023 cuft

Hydrograph Discharge Table

Time (hrs)	Inflow cfs	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	Clv D cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Outflow cfs
12.00	97.09	50.43	98.65	0.76			43.03				43.79
12.20	130.56 <	< 51.28	107.53	0.46			102.11				102.56
12.40	95.39	51.43	108.98	0.21			113.75				108.98 <<
12.60	55.36	51.01	104.84	0.66			81.91				82.57
12.80	23.37	50.47	99.16	0.76			45.86				46.63
13.00	18.20	50.13	95.02	0.72			26.65				27.37
13.20	15.05	49.97	92.80	0.70			19.34				20.05
13.40	13.16	49.88	92.55	0.69			15.41				16.11
13.60	11.73	49.83	91.89	0.69			13.11				13.79
13.80	10.57	49.78	91.40	0.68			11.49				12.17
14.00	9.59	49.75	91.00	0.68			10.27				10.94

Hyd. No. 18

100 YR POST DEV ROUTED

Hydrograph type = Reservoir Storm frequency = 100 yrs

Inflow hyd. No. = 8

Max. Elévation = 52.90 ft Peak discharge

= 173.72 cfs

Time interval $= 12 \min$

Reservoir name = REVISED POND MA

Max. Storage = 192,702 cuft

Storage Indication method used.

Total Volume = 937,193 cuft

Hydrograph Discharge Table

Time (hrs)	Inflow cfs	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	Clv D cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Outflow cfs
11.60	25.51	49.92	92.77	0.70			16.87				17.56
11.80	61.42	50.28	97.08	0.74			34.89				35.63
12.00	155.84	51.19	106.65	0.54			95.22				95.76
12.20	206.85 <	< 52.47	118.78				208.29	19.17			137.96
12.40	150.13	52.90	122.62				252.78	51.10			173.72 <<
12.60	86.32	52.29	117.17				190.92	9.38			126.55
12.80	36.07	51.25	107.25	0.48			99.86				100.34
13.00	28.05	50.42	98.53	0.76			42.42				43.17
13.20	23.16	50.18	95.84	0.73			29.36				30.09
13.40	20.24	50.06	93.94	0.71			23.52				24.23
13.60	18.03	49.99	92.81	0.71			20.08				20.78
13.80	16.23	49.93	92.78	0.70			17.63				18.33

Hyd. No. 20

2 YR POST DEV ROUTED

Hydrograph type = Reservoir Storm frequency = 2 yrs Inflow hyd. No. = 10

Max. Elévation = 50.14 ft Peak discharge Time interval

= 27.97 cfs= 1 min

Reservoir name = REVISED POND MA

Max. Storage = 94,184 cuft

Storage Indication method used

Total Volume = 106,524 cuft

Hydrograph Discharge Table

Time (hrs)	Inflow cfs	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	Clv D cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Outflow cfs
0.57	49.45	49.51	88.17	0.64			2.99				3.63
0.58	48.24	49.60	89.18	0.65			5.19				5.84
0.60	47.04	49.67	90.10	0.67			7.61				8.28
0.62	45.83	49.74	90.93	0.67			10.04				10.71
0.63	44.62	49.81	91.67	0.68			12.37				13.05
0.65	43.42	49.86	92.33	0.69			14.66				15.35
0.67	42.21	49.91	92.76	0.70			16.73				17.43
0.68	41.01	49.96	92.79	0.70			18.68				19.38
0.70	39.80	50.00	92.82	0.71			20.37				21.08
0.72	38.59	50.03	93.30	0.71			21.85				22.56
0.73	37.39	50.05	93.78	0.71			23.11				23.82
0.75	36.18	50.08	94.18	0.72			24.17				24.88
0.77	34.98	50.09	94.51	0.72			25.04				25.76
0.78	33.77	50.11	94.75	0.72			25.77				26.49
0.80	32.56	50.12	94.93	0.72			26.35				27.08
0.82	31.36	50.13	95.06	0.72			26.78				27.50
0.83	30.15	50.13	95.14	0.72			27.06				27.78
0.85	28.95	50.14	95.19	0.72			27.21				27.94
0.87	27.74	50.14	95.20	0.72			27.25				27.97 <<
0.88	26.53	50.14	95.18	0.72			27.18				27.90
0.90	25.33	50.13	95.13	0.72			27.01				27.73
0.92	24.12	50.13	95.05	0.72			26.74				27.47
0.93	22.92	50.12	94.94	0.72			26.40				27.12
0.95	21.71	50.11	94.82	0.72			25.98				26.70
0.97	20.50	50.10	94.67	0.72			25.50				26.22
0.98	19.30	50.09	94.48	0.72			24.97				25.69
1.00	18.09	50.08	94.27	0.72			24.40				25.11
1.02	16.88	50.07	94.03	0.72			23.77				24.49
1.03	15.68	50.05	93.78	0.71			23.10				23.82
1.05	14.47	50.04	93.51	0.71			22.39				23.10
1.07	13.27	50.02	93.22	0.71			21.63				22.34
1.08	12.06	50.01	92.92	0.71			20.84				21.55
1.10	10.85	49.99	92.81	0.71			20.03				20.73
1.12	9.65	49.97	92.80	0.70			19.18				19.89
1.13	8.44	49.95	92.79	0.70			18.31				19.01
1.15	7.24	49.93	92.77	0.70			17.41				18.11

Hyd. No. 21

10 YR POST DEV ROUTED

Hydrograph type = Reservoir Storm frequency = 10 yrs Inflow hyd. No. = 11 Max. Elevation = 50.53 ft

Peak discharge Time interval

= 50.11 cfs

= 1 min Reservoir name = REVISED POND MA

= 107,379 cuftMax. Storage

Storage Indication method used.

Total Volume = 161,095 cuft

Hydrograph Discharge Table

Time (hrs)	Inflow cfs	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	Clv D cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Outflow cfs
0.47	79.53	49.62	89.45	0.66			5.87				6.52
0.48	77.83	49.75	91.02	0.68	****		10.31				10.99
0.50	76.14	49.87	92.43	0.69			14.99				15.68
0.52	74.45	49.98	92.81	0.70			19.69				20.39
0.53	72.76	50.07	94.13	0.72			24.02				24.74
0.55	71.07	50.15	95.44	0.73			28.04				28.77
0.57	69.37	50.22	96.43	0.73			31.72				32.45
0.58	67.68	50.29	97.11	0.74			35.03				35.77
0.60	65.99	50.34	97.69	0.75			37.99				38.74
0.62	64.30	50.38	98.18	0.75			40.54				41.29
0.63	62.60	50.42	98.59	0.76			42.73				43.49
0.65	60.91	50.45	98.93	0.76			44.58				45.34
0.67	59.22	50.48	99.20	0.76			46.06				46.83
0.68	57.53	50.50	99.41	0.77			47.23				48.00
0.70	55.84	50.51	99.57	0.77			48.13				48.90
0.72	54.14	50.52	99.68	0.77			48.77				49.54
0.73	52.45	50.53	99.75	0.77			49.17				49.94
0.75	50.76	50.53	99.78	0.77			49.34				50.11 <<
0.77	49.07	50.53	99.77	0.77			49.32				50.09
0.78	47.38	50.53	99.74	0.77			49.13				49.90
0.80	45.68	50.52	99.68	0.77			48.77				49.54
0.82	43.99	50.51	99.59	0.77			48.28				49.05
0.83	42.30	50.50	99.49	0.77			47.66				48.43
0.85	40.61	50.49	99.36	0.77			46.95				47.71
0.87	38.92	50.48	99.21	0.76			46.14				46.91
0.88	37.22	50.46	99.05	0.76			45.25				46.01
0.90	35.53	50.45	98.87	0.76			44.28				45.04
0.92	33.84	50.43	98.68	0.76	*****		43.23				43.99
0.93	32.15	50.41	98.48	0.76			42.12				42.88
0.95	30.46	50.39	98.27	0.75			40.98				41.73
0.97	28.76	50.37	98.04	0.75			39.81				40.56
0.98	27.07	50.35	97.80	0.75			38.59				39.34
1.00	25.38	50.33	97.56	0.75			37.32				38.07
1.02	23.69	50.30	97.31	0.74			36.02				36.76
1.03	22.00	50.28	97.05	0.74			34.73				35.47
1.05	20.30	50.26	96.77	0.74			33.41				34.15

Hyd. No. 22

25 YR POST DEV ROUTED

Hydrograph type = Reservoir Storm frequency = 25 yrs Inflow hyd. No. = 12

Max. Elévation $= 50.72 \, \mathrm{ft}$ Peak discharge Time interval = 1 min

= 62.10 cfs

Reservoir name = REVISED POND MA

Max. Storage = 113,675 cuft

Storage Indication method used.

Total Volume = 190,366 cuft

Hydrograph Discharge Table

Time (hrs)	Inflow cfs	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	CIv D cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Outflow cfs
0.43	95.67	49.64	89.76	0.66			6.69				7.35
0.45	93.72	49.80	91.65	0.68			12.28				12.97
0.47	91.77	49.95	92.79	0.70			18.36				19.06
0.48	89.82	50.08	94.19	0.72			24.19				24.90
0.50	87.86	50.19	95.93	0.73			29.67				30.40
0.52	85.91	50.28	97.07	0.74			34.82				35.56
0.53	83.96	50.37	97.99	0.75			39.54				40.29
0.55	82.01	50.44	98.78	0.76			43.76				44.52
0.57	80.05	50.50	99.45	0.77			47.44				48.21
0.58	78.10	50.55	100.01				50.69				51.46
0.60	76.15	50.60	100.48				53.39				54.16
0.62	74.20	50.63	100.85				55.67				56.45
0.63	72.24	50.66	101.15				57.50				58.28
0.65	70.29	50.68	101.39				58.92				59.70
0.67	68.34	50.70	101.56				59.97				60.74
0.68	66.39	50.71	101.68				60.71				61.48
0.70	64.43	50.72	101.75				61.15				61.93
0.72	62.48	50.72	101.77	0.77			61.32				62.10 <<
0.73	60.53	50.72	101.76	0.77			61.26				62.03
0.75	58.58	50.71	101.72				60.98				61.75
0.77	56.62	50.71	101.65				60.51				61.29
0.78	54.67	50.70	101.55				59.88				60.66
0.80	52.72	50.68	101.42	0.78			59.12				59.90
0.82	50.77	50.67	101.27				58.23				59.01
0.83	48.81	50.65	101.11	0.78			57.22				58.00
0.85	46.86	50.64	100.93	0.78			56.11				56.89
0.87	44.91	50.62	100.73	0.78			54.91				55.69
0.88	42.96	50.60	100.52	0.78			53.63				54.41
0.90	41.00	50.58	100.29	0.78			52.32				53.10
0.92	39.05	50.56	100.06	0.77			50.95				51.72
0.93	37.10	50.53	99.81	0.77			49.52				50.29
0.95	35.15	50.51	99.55	0.77			48.03				48.79
0.97	33.19	50.48	99.28	0.77			46.53				47.29
0.98	31.24	50.46	99.01	0.76			45.01				45.77
1.00	29.29	50.43	98.72	0.76			43.44				44.20
1.02	27.34	50.41	98.43	0.76			41.84				42.59

Hyd. No. 23

100 YR POST DEV ROUTED

Hydrograph type = Reservoir Storm frequency = 100 yrs Inflow hyd. No. = 13

Max. Elevation = 50.99 ft

Peak discharge = 81.17 cfs Time interval = 1 min

Reservoir name = REVISED POND MA

Max. Storage = 122,953 cuft

Storage Indication method used.

Total Volume = 236,746 cuft

Hydrograph Discharge Table

Time (hrs)	inflow cfs	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	Clv D cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Outflow cfs
0.40	113.53	49.73	90.72	0.67			9.39				10.07
0.42		<< 49.92	92.77	0.70			16.99				17.69
0.43	115.89	50.09	94.52	0.72			25.06				25.77
0.45	113.53	50.25	96.67	0.74			32.91				33.64
0.47	111.16	50.38	98.15	0.75			40.36				41.11
0.48	108.80	50.50	99.42	0.77			47.26				48.03
0.50	106.43	50.60	100.50	0.78			53.51				54.29
0.52	104.07	50.68	101.41	0.78			59.07				59.85
0.53	101.70	50.76	102.18	0.76			63.89				64.66
0.55	99.34	50.82	102.81				67.98				68.73
0.57	96.97	50.87	103.32	0.73			71.42				72.14
0.58	94.61	50.91	103.74				74.19				74.90
0.60	92.24	50.94	104.06	0.70			76.42				77.11
0.62	89.88	50.96	104.30	0.69			78.09				78.78
0.63	87.51	50.98	104.47				79.29				79.96
0.65	85.15	50.99	104.58	0.67			80.05				80.72
0.67	82.78	50.99	104.64	0.67			80.44				81.11
0.68	80.42	50.99 <<	104.65	0.67			80.50				81.17 <<
0.70	78.05	50.99	104.61	0.67			80.27				80.94
0.72	75.69	50.98	104.54	0.67			79.78				80.45
0.73	73.32	50.97	104.44	0.68			79.06				79.74
0.75	70.96	50.96	104.31	0.69			78.15				78.83
0.77	68.59	50.95	104.15	0.69			77.06				77.75
0.78	66.22	50.93	103.97	0.70			75.81				76.51
0.80	63.86	50.91	103.77	0.71			74.43				75.14
0.82	61.49	50.89	103.56				72.96				73.68
0.83	59.13	50.87	103.32				71.40				72.13
0.85	56.76	50.84	103.07	0.74			69.75				70.48
0.87	54.40	50.82	102.81	0.74			68.01				68.75
0.88	52.03	50.79	102.54				66.22				66.97
0.90	49.67	50.76	102.26				64.39				65.16
0.92	47.30	50.74	101.96	0.77			62.51				63.28
0.93	44.94	50.71	101.66	0.78			60.57				61.35
0.95	42.57	50.68	101.34	0.78			58.64				59.42
0.97	40.21	50.65	101.02	0.78			56.67				57.45
0.98	37.84	50.62	100.69	0.78			54.66				55.44

Reservoir No. 2 - REVISED E&S POND

Pond Data

Pond storage is based on known contour areas

Stage / Storage Table

Stage ft	Elevation ft	Contour area sqft	Incr. Storage cuft	Total storage cuft
0.00	46.99	00	0	0
0.01	47.00	26,777	134	134
1.01	48.00	28,942	27,860	27,994
2.01	49.00	30,783	29,863	57,857
3.01	50.00	32,631	31,707	89,564
4.01	51.00	34,550	33,591	123,155
5.01	52.00	36,751	35,651	158,806
6.01	53.00	38,705	37,728	196,534
7.01	54.00	40,847	39,776	236,310

Culvert / O	rifice Stru	ıctures		Weir Structures						
	[A]	[B]	[C]	[D]		[A]	[B]	[C]	[D]	
Rise in	= 42.0	4.0	0.0	0.0	Crest Len ft	= 12.5	20.0	0.0	0.0	
Span in	= 42.0	4.0	0.0	0.0	Crest El. ft	= 49.33	52.00	0.00	0.00	
No. Barrels	= 1	1	0	0	Weir Coeff.	= 3.00	3.00	0.00	0.00	
Invert El. ft	= 44.14	48.20	0.00	0.00	Eqn. Exp.	= 1.50	1.50	0.00	0.00	
Length ft	= 45.0	0.5	0.0	0.0	Multi-Stage	= Yes	No	No	No	
Slope %	= 0.42	0.00	0.00	0.00						
N-Value	= .013	.013	.013	.000						
Orif. Coeff.	= 0.60	0.60	0.60	0.00						
Multi-Stage	=	Yes	Yes	No	Tailwater Ele	vation = 4	45.70 ft			

Stage / Storage / Discharge Table

Note: All outflows have been analyzed under inlet and outlet control.

Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	Clv D cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Discharge cfs
0.00	0	46.99	22.69	0.00			0.00	0.00			0.00
0.00	13	46.99	46.44	0.00			0.00	0.00			0.00
0.00	27	46.99	46.45	0.00			0.00	0.00			0.00
0.00	40	46.99	46.47	0.00			0.00	0.00			0.00
0.00	54	46.99	46.49	0.00			0.00	0.00			0.00
0.00	67	46.99	46.51	0.00			0.00	0.00			0.00
0.01	80	47.00	46.53	0.00			0.00	0.00			0.00
0.01	94	47.00	46.54	0.00			0.00	0.00			0.00
0.01	107	47.00	46.56	0.00			0.00	0.00			0.00
0.01	121	47.00	46.58	0.00			0.00	0.00			0.00
0.01	134	47.00	46.60	0.00			0.00	0.00			0.00

REVISED E&S POND

Stage / Storage / Discharge Table

Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	Clv D cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Discharge cfs
0.11	2,920	47.10	49.83	0.00			0.00	0.00			0.00
0.21	5,706	47.20	52.89	0.00			0.00	0.00			0.00
0.31	8,492	47.30	55.40	0.00			0.00	0.00			0.00
0.41	11,278	47.40	57.56	0.00			0.00	0.00			0.00
0.51	14,064	47.50	59.30	0.00			0.00	0.00			0.00
0.61	16,850	47.60	60.83	0.00			0.00	0.00			0.00
0.71	19,636	47.70	62.32	0.00			0.00	0.00			0.00
0.81	22,422	47.80	64.01	0.00			0.00	0.00			0.00
0.91	25,208	47.90	65.67	0.00			0.00	0.00			0.00 0.00
1.01	27,994	48.00	67.28	0.00			0.00 0.00	0.00 0.00			0.00
1.11 1.21	30,980 33,967	48.10 48.20	68.86	0.00 0.00			0.00	0.00			0.00
1.21	36,953	48.30	70.40 71.91	0.00			0.00	0.00			0.02
1.41	39,939	48.40	73.38	0.02			0.00	0.00			0.09
1.51	42,926	48.50	74.83	0.05			0.00	0.00			0.15
1.61	45,912	48.60	76.25	0.20			0.00	0.00			0.20
1.71	48,898	48.70	77.65	0.23			0.00	0.00			0.23
1.81	51,884	48.80	79.02	0.28	~~~		0.00	0.00			0.28
1.91	54,871	48.90	80.36	0.31		~~~	0.00	0.00			0.31
2.01	57,857	49.00	81.69	0.33			0.00	0.00			0.33
2.11	61,028	49.10	82.99	0.36			0.00	0.00			0.36 0.38
2.21	64,198	49.20	84.27	0.38			0.00 0.00	0.00 0.00			0.36
2.31	67,369 70,540	49.30 49.40	85.53	0.41 0.43			0.69	0.00			1.12
2.41 2.51	73,711	49.40	86.78 88.01	0.45			2.63	0.00			3.08
2.61	76,881	49.60	89.22	0.47			5.26	0.00			5.73
2.71	80,052	49.70	90.41	0.49			8.44	0.00			8.92
2.81	83,223	49.80	91.59	0.50			12.08	0.00			12.59
2.91	86,393	49.90	92.76	0.52			16.14	0.00			16.66
3.01	89,564	50.00	92.82	0.54			20.57	0.00			21.10
3.11	92,923	50.10	94.62	0.55			25.34	0.00			25.89
3.21	96,282	50.20	96.16	0.57			30.43	0.00			31.00 36.41
3.31	99,641	50.30	97.27	0.58			35.82 41.51	0.00 0.00			42.10
3.41 3.51	103,000 106,360	50.40 50.50	98.37 99.45	0.60 0.61			47.46	0.00			48.07
3.61	100,300	50.60	100.53	0.63			53.67	0.00			54.30
3.71	113,078	50.70	101.59	0.64			60.13	0.00			60.77
3.81	116,437	50.80	102.64	0.66			66.83	0.00			67.49
3.91	119,796	50.90	103.68	0.67			73.77	0.00			74.44
4.01	123,155	51.00	104.71	0.67			80.93	0.00			81.60
4.11	126,720	51.10	105.73	0.61			88.31	0.00			88.92
4.21	130,285	51.20	106.74	0.54			95.89	0.00		~~~	96.43
4.31	133,850	51.30	107.74	0.44			103.69				104.12 108.73
4.41	137,415	51.40	108.73	0.28			111.68 119.87				109.71
4.51 4.61	140,980 144,546	51.50 51.60	109.71 110.68	0.00 0.00			128.25				110.68
4.71	148,111	51.70	111.65	0.00			136.82				111.65
4.81	151,676	51.80	112.61	0.00			145.57				112.61
4.91	155,241	51.90	113.55	0.00			154.50				113.55
5.01	158,806	52.00	114.49	0.00			163.61				114.49
5.11	162,579	52.10	115.43	0.00			172.88				117.33
5.21	166,352	52.20	116.35	0.00			182.33				121.72
5.31	170,124	52.30	117.27	0.00			191.94	9.86			127.13

REVISED E&S POND **Stage / Storage / Discharge Table**

Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	Clv D cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Discharge cfs
5.41	173,897	52.40	118.18	0.00			201.71				133.36
5.51	177,670	52.50	119.09	0.00			211.65	21.21			140.30
5.61	181,443	52.60	119.98	0.00			221.74	27.88			147.87
5.71	185,216	52.70	120.88	0.00			231.99	35.14			156.01
5.81	188,988	52.80	121.76	0.00			242.39	42.93			164.69
5.91	192,761	52.90	122.64	0.00			252.95	51.23			173.87
6.01	196,534	53.00	123.51	0.00			263.65	60.00			183.51
6.11	200,512	53.10	124.38	0.00			274.50	69.22			193.60
6.21	204,489	53.20	125.23	0.00			285.49	78.87			204.11
6.31	208,467	53.30	126.09	0.00			296.63	88.93			215.02
6.41	212,444	53.40	126.94	0.00			307.91	99.39			226.33
6.51	216,422	53.50	127.78	0.00			319.33	110.23			238.00
6.61	220,400	53.60	128.62	0.00			330.88				250.05
6.71	224,377	53.70	129.45	0.00			342.57	132.99			262.44
6.81	228,355	53.80	130.27	0.00			354.40	144.90			275.17
6.91	232,332	53.90	131.09	0.00			366.36	157.14			288.23
7.01	236,310	54.00	131.91	0.00			378.45	169.71			301.62

Hydrograph Report

English

Hyd. No. 25

2 YR POST DEV ROUTED

Hydrograph type = Reservoir Storm frequency = 2 yrs

Inflow hyd. No. = 5

Max. Elevation $= 50.38 \, ft$ Peak discharge Time interval

= 40.93 cfs= 12 min

Reservoir name = REVISED E&S PON

Max. Storage = 102,310 cuft

Storage Indication method used.

Total Volume = 239,801 cuft

Hydrograph Discharge Table

Time (hrs)	Inflow cfs	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	Clv D cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Outflow cfs
12.20 12.40 12.60 12.80	53.61 << 40.24 24.24 10.67	50.08 50.38 << 50.26 50.03	94.24 98.14 96.86 93.32	0.55 0.60 0.58 0.54			24.34 40.34 33.83 21.90				24.89 40.93 << 34.41 22.44
13.00 13.20	8.37 6.96	49.83 49.73	91.97 90.81	0.51 0.49			13.42 9.66				13.93 10.15 8.11
13.40 13.60 13.80	6.11 5.46 4.93	49.67 49.64 49.61	90.11 89.65 89.31	0.48 0.47 0.47			7.63 6.40 5.51				6.87 5.98
14.00 14.20 14.40	4.49 4.10 3.81	49.59 49.57 49.55	89.05 88.83 88.63	0.46 0.46 0.46			4.90 4.41 3.99				5.36 4.87 4.45
14.60	3.61	49.54	88.48	0.45			3.65				4.11

Hyd. No. 26

10 YR POST DEV ROUTED

Hydrograph type = Reservoir Storm frequency = 10 yrs

Inflow hyd. No. Max. Elevation = 6

= 51.22 ft

Peak discharge

= 97.94 cfs

Time interval = 12 min Reservoir name = REVISED E&S PON

Max. Storage = 130,984 cuft

Storage Indication method used.

Total Volume = 511,670 cuft

Hydrograph Discharge Table

Time (hrs)	Inflow cfs	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	Clv D cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Outflow cfs
11.80	31.89	49.85	92.14	0.51			13.98				14.50
12.00	84.46	50.46	99.00	0.61			44.98				45.59
12.20	114.34 <<	51.12	105.95	0.59			89.99				90.58
12.40	83.83	51.22 <<	106.93	0.52			97.42				97.94 <<
12.60	48.88	50.85	103.13	0.66			70.11				70.77
12.80	20.75	50.39	98.26	0.60			40.93				41.53
13.00	16.17	50.08	94.18	0.55	~~~~		24.17				24.72
13.20	13.38	49.93	92.77	0.53			17.48				18.01
13.40	11.71	49.85	92.13	0.51			13.96				14.47
13.60	10.44	49.79	91.51	0.50			11.84				12.34
13.80	9.41	49.75	91.06	0.49			10.43				10.92

Hyd. No. 27

25 YR POST DEV ROUTED

Hydrograph type = Reservoir Storm frequency = 25 yrs Inflow hyd. No. = 7

Max. Elevation = 51.44 ft Peak discharge

= 109.10 cfs

= 12 min Time interval Reservoir name = REVISED E&S PON

= 138,761 cuftMax. Storage

Storage Indication method used.

Total Volume = 586,076 cuft

Hydrograph Discharge Table

Time (hrs)	Inflow cfs	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	Clv D cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Outflow cfs
11.80	37.20	49.97	92.80	0.53			19.28				19.81
12.00	97.09	50.61	100.64	0.63			54.34				54.97
12.20	130.56 <	< 51.32	107.91	0.41			105.06				104.91
12.40	95.39	51.44 <<	109.10	0.18			114.77				109.10 <<
12.60	55.36	51.02	104.91	0.66			82.39				83.04
12.80	23.37	50.48	99.19	0.61			45.99				46.60
13.00	18.20	50.13	95.06	0.56			26.78				27.34
13.20	15.05	49.98	92.80	0.53			19.49				20.03
13.40	13.16	49.89	92.59	0.52			15.57				16.09
13.60	11.73	49.83	91.93	0.51			13.28				13.79
13.80	10.57	49.79	91.45	0.50			11.65				12.15
14.00	9.59	49.75	91.06	0.49			10.44				10.93

Hyd. No. 28

100 YR POST DEV ROUTED

Hydrograph type = Reservoir Storm frequency = 100 yrs Inflow hyd. No. = 8

Max. Elevation $= 52.90 \, \mathrm{ft}$ Peak discharge

= 173.73 cfs

= 12 min Time interval

Reservoir name

= REVISED E&S PON

= 192,705 cuftMax. Storage

Storage Indication method used.

Total Volume = 937,246 cuft

Hydrograph Discharge Table

Time (hrs)	Inflow cfs	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	Clv D cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Outflow cfs
11.60	25.51	49.96	92.79	0.53			18.58				19.11
11.80	61.42	50.30	97.23	0.58			35.63				36.21
12.00	155.84	51.20	106.69	0.54			95.53				96.07
12.20	206.85 <	< 52.47	118.79				208.35	19.21			137.99
12.40	150.13	52.90 <<	122.62				252.79	51.10			173.73 <<
12.60	86.32	52.29	117.17				190.92	9.38			126.55
12.80	36.07	51.25	107.25	0.48			99.86				100.34
13.00	28.05	50.42	98.54	0.60			42.48				43.08
13.20	23.16	50.18	95.88	0.57			29.48				30.05
13.40	20.24	50.06	93.99	0.55			23.67				24.21
13.60	18.03	49.99	92.81	0.54			20.24				20.77
13.80	16.23	49.94	92.78	0.53			17.80				18.33

Hyd. No. 30

2 YR POST DEV ROUTED

Hydrograph type = Reservoir Storm frequency = 2 yrs Inflow hyd. No. = 10

Max. Elevation = 50.34 ft

= 38.50 cfsPeak discharge Time interval

= 1 min

Reservoir name = REVISED E&S PON

= 100,876 cuft Max. Storage

Storage Indication method used.

Total Volume = 124,382 cuft

Hydrograph Discharge Table

Time (hrs)	Inflow cfs	Elevation ft	Clv A cfs	CIv B cfs	Clv C cfs	Clv D cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Outflow cfs
0.40	57.89	49.55	88.56	0.46			3.83				4.28
0.42	60.30 <<		89.77	0.48			6.74				7.21
0.43	59.10	49.74	90.92	0.49			10.00				10.49
0.45	57.89	49.83	91.94	0.51			13.32				13.82
0.47	56.69	49.91	92.76	0.52			16.56				17.08
0.48	55.48	49.98	92.81	0.53			19.70				20.23
0.50	54.27	50.04	93.56	0.54			22.51				23.06
0.52	53.07	50.09	94.50	0.55			25.02				25.57
0.53	51.86	50.14	95.23	0.56			27.34				27.90
0.55	50.65	50.18	95.84	0.57			29.37				29.93
0.57	49.45	50.21	96.31	0.57			31.16				31.73
0.58	48.24	50.24	96.64	0.58			32.73			****	33.31
0.60	47.04	50.27	96.91	0.58			34.05				34.63
0.62	45.83	50.29	97.13	0.58			35.13				35.72
0.63	44.62	50.30	97.31	0.58			36.02				36.60
0.65	43.42	50.32	97.45	0.59			36.73				37.32
0.67	42.21	50.33	97.55	0.59			37.26				37.85
0.68	41.01	50.33	97.62	0.59			37.63				38.22
0.70	39.80	50.34	97.66	0.59			37.84				38.43
0.72	38.59	50.34 <<	97.67	0.59			37.91				38.50 <<
0.73	37.39	50.34	97.66	0.59			37.86				38.45
0.75	36.18	50.33	97.63	0.59		~~~~	37.70		****		38.29
0.77	34.98	50.33	97.58	0.59			37.44				38.03
0.78	33.77	50.32	97.52	0.59			37.09				37.67
0.80	32.56	50.31	97.43	0.59			36.65				37.24
0.82	31.36	50.31	97.33	0.59			36.14				36.73
0.83	30.15	50.30	97.22	0.58			35.58				36.16
0.85	28.95	50.28	97.10	0.58			34.97				35.55
0.87	27.74	50.27	96.96	0.58			34.31				34.89
0.88	26.53	50.26	96.81	0.58			33.60				34.17
0.90	25.33	50.24	96.66	0.58			32.84				33.41
0.92	24.12	50.23	96.49	0.57			32.04				32.61
0.93	22.92	50.21	96.32	0.57			31.20				31.77
0.95	21.71	50.20	96.13	0.57			30.34				30.91
0.97	20.50	50.18	95.88	0.57			29.49				30.05
0.98	19.30	50.16	95.61	0.56			28.60				29.17

Hyd. No. 31

10 YR POST DEV ROUTED

Hydrograph type = Reservoir Storm frequency = 10 yrs Inflow hyd. No. = 11 Max. Elevation = 50.69 f

Max. Elevation $= 50.69 \, \text{ft}$ Peak discharge = 60.02 cfsTime interval

= 1 min

Reservoir name = REVISED E&S PON

Max. Storage = 112,685 cuft

Storage Indication method used

Total Volume = 179,011 cuft

Hydrograph Discharge Table

Time (hrs)	inflow cfs	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	Clv D cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Outflow cfs
0.35	71.07	49.64	89.67	0.47			6.46				6.93
0.37	74.45	49.76	91.10	0.50			10.56				11.06
0.38	77.83	49.88	92.49	0.52			15.21				15.72
0.40	81.22	49.99	92.82	0.54			20.25				20.79
0.42	84.60 <<		94.62	0.55			25.33				25.88
0.43	82.91	50.20	96.14	0.57			30.36				30.93
0.45	81.22	50.29	97.11	0.58			35.06				35.64
0.47	79.53	50.36	97.95	0.59			39.34				39.93
0.48	77.83	50.43	98.67	0.60			43.15				43.75
0.50	76.14	50.48	99.28	0.61			46.50				47.12
0.52	74.45	50.53	99.79	0.62			49.43				50.05
0.53	72.76	50.57	100.22	0.62			51.90				52.53
0.55	71.07	50.60	100.57	0.63			53.95				54.58
0.57	69.37	50.63	100.85				55.66				56.29
0.58	67.68	50.65	101.07				56.99				57.63
0.60	65.99	50.67	101.24	0.64			58.00				58.64
0.62	64.30	50.68	101.35	0.64			58.71				59.35
0.63	62.60	50.68	101.43	0.64			59.16				59.80
0.65	60.91	50.69	101.46	0.64			59.37				60.01
0.67	59.22	50.69 <<	101.46				59.38				60.02 <<
0.68	57.53	50.69	101.43				59.20				59.84
0.70	55.84	50.68	101.38				58.85				59.49
0.72	54.14	50.67	101.30				58.36				59.00
0.73	52.45	50.66	101.19	0.64			57.74				58.38
0.75	50.76	50.65	101.07	0.64			57.00				57.64
0.77	49.07	50.64	100.93	0.63			56.16				56.79
0.78	47.38	50.62	100.78	0.63			55.22				55.85
0.80	45.68	50.61	100.61	0.63			54.21				54.84
0.82	43.99	50.59	100.43				53.14				53.76
0.83	42.30	50.57	100.24	0.62		~	52.02				52.64
0.85	40.61	50.55	100.04	0.62			50.84				51.46
0.87	38.92	50.53	99.82	0.62			49.61				50.23
0.88	37.22	50.51	99.60	0.62			48.34				48.95
0.90	35.53	50.49	99.37	0.61			47.03				47.64
0.92	33.84	50.47	99.14	0.61		~	45.72				46.33
0.93	32.15	50.45	98.89	0.61			44.38				44.98

Hyd. No. 32

25 YR POST DEV ROUTED

Hydrograph type = Reservoir Storm frequency = 25 yrs Inflow hyd. No. = 12

Max. Elevation = 50.86 ft

Peak discharge =

= 71.73 cfs

Time interval = 1 min
Reservoir name = REVISED E&S PON

Max. Storage = 118,487 cuft

Storage Indication method used.

Total Volume = 208,300 cuft

Hydrograph Discharge Table

Time (hrs)	inflow cfs	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	Clv D cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Outflow cfs
0.33	78.10	49.70	90.39	0.48			8.37				8.85
0.35	82.01	49.83	91.92	0.51			13.22		~		13.72
0.37	85.91	49.96	92.79	0.53			18.60				19.13
0.38	89.82	50.08	94.19	0.55			24.19				24.74
0.40	93.72	50.19	96.02	0.57			29.95				30.52
0.42	97.63 <<	50.30	97.29	0.58			35.91				36.50
0.43	95.67	50.40	98.41	0.60		~~~~	41.73				42.33
0.45	93.72	50.49	99.37	0.61			47.02				47.63
0.47	91.77	50.57	100.19				51.74				52.37
0.48	89.82	50.63	100.89	0.63			55.86				56.49
0.50	87.86	50.69	101.47	0.64			59.39				60.03
0.52	85.91	50.73	101.94	0.65			62.40				63.04
0.53	83.96	50.77	102.33	0.65			64.87				65.52
0.55	82.01	50.80	102.64	0.66			66.84				67.50
0.57	80.05	50.82	102.88	0.66			68.42				69.08
0.58	78.10	50.84	103.05	0.66			69.59				70.25
0.60	76.15	50.85	103.17	0.66			70.39			~	71.05
0.62	74.20	50.86	103.24	0.66			70.87				71.53
0.63	72.24	50.86 <<	103.27	0.66			71.07				71.73 <<
0.65	70.29	50.86	103.26	0.66			71.01				71.68
0.67	68.34	50.86	103.22				70.74				71.40
0.68	66.39	50.85	103.15				70.27				70.93
0.70	64.43	50.84	103.06				69.62				70.28
0.72	62.48	50.83	102.94				68.83				69.49
0.73	60.53	50.82	102.80				67.90				68.55
0.75	58.58	50.80	102.64				66.85				67.50
0.77	56.62	50.78	102.46				65.73				66.38
0.78	54.67	50.77	102.27				64.51				65.17
0.80	52.72	50.75	102.07				63.22		~~		63.87
0.82	50.77	50.73	101.86				61.85				62.49
0.83	48.81	50.70	101.63				60.41				61.06
0.85	46.86	50.68	101.39				58.96				59.60
0.87	44.91	50.66	101.15	0.64			57,47				58.10
0.88	42.96	50.63	100.89				55.92				56.55
0.90	41.00	50.61	100.63				54.33				54.96
0.92	39.05	50.58	100.36	0.63			52.74				53.36

Hyd. No. 33

100 YR POST DEV ROUTED

Hydrograph type = Reservoir Storm frequency = 100 yrs Inflow hyd. No. = 13 Max. Elevation = 51.11 ft

= 90.02 cfsPeak discharge Time interval = 1 min

Reservoir name = REVISED E&S PON

= 127,246 cuft Max. Storage

Storage Indication method used.

Total Volume = 254,703 cuft

Hydrograph Discharge Table

Time (hrs)	Inflow cfs	Elevation ft	CIv A cfs	Clv B cfs	Clv C cfs	Clv D cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Outflow cfs
0.32	89.88	49.82	91.83	0.51			12.90				13.41
0.33	94.61	49.96	92.80	0.53			18.96				19.49
0.35	99.34	50.10	94.59	0.55		w	25.26				25.82
0.37	104.07	50.23	96.47	0.57			31.94				32.51
0.38	108.80	50.35	97.86	0.59			38.88				39.47
0.40	113.53	50.48	99.19	0.61			46.00				46.61
0.42	118.26 <	< 50.59	100.45	0.63			53.22				53.85
0.43	115.89	50.70	101.58	0.64			60.10				60.75
0.45	113.53	50.79	102.54	0.65			66.20				66.85
0.47	111.16	50.87	103.33	0.66			71.48				72.15
0.48	108.80	50.93	103.99				75.96				76.63
0.50	106.43	50.98	104.53	0.67			79.69				80.35
0.52	104.07	51.02	104.94	0.65			82.63				83.29
0.53	101.70	51.05	105.26				84.92				85.56
0.55	99.34	51.08	105.50				86.67				87.30
0.57	96.97	51.10	105.68	0.61			87.94				88.56
0.58	94.61	51.11	105.79	0.60			88.80				89.41
0.60	92.24	51.11	105.86				89.28				89.88
0.62	89.88	51.11 <<	105.88				89.43				90.02 <<
0.63	87.51	51.11	105.85				89.27				89.87
0.65	85.15	51.11	105.80	0.60			88.84				89.45
0.67	82.78	51.10	105.71	0.61			88.19				88.80
0.68	80.42	51.09	105.59	0.62			87.34				87.96
0.70	78.05	51.07	105.45				86.32				86.95
0.72	75.69	51.06	105.29	0.63			85.14				85.78
0.73	73.32	51.04	105.11				83.83				84.47
0.75	70.96	51.02	104.91				82.38				83.04
0.77	68.59	51.00	104.69	0.67			80.83				81.50
0.78	66.22	50.97	104.45	0.67			79.14				79.80
0.80	63.86	50.95	104.19	0.67			77.36				78.03
0.82	61.49	50.92	103.93	0.67			75.52				76.18
0.83	59.13	50.90	103.65	0.67			73.61				74.28
0.85	56.76	50.87	103.37	0.66			71.71				72.37
0.87	54.40	50.84	103.07	0.66			69.75				70.41
0.88	52.03	50.81	102.77	0.66			67.74				68.40
0.90	49.67	50.78	102.46	0.65			65.73				66.39

DRAINAGE CALCULATIONS

FOR

WILLIAMSBURG PLANTATION SECTION 5: UNITS 97-133

Longhill Road Williamsburg, Virginia 23188

Prepared By:

AES Consulting Engineers 5248 Olde Towne Road, Suite 1 Williamsburg, Virginia 23188 AES Project No. 7555-12 August 23, 2000 Revised: March 21, 2001

NARRATIVE

This project encompasses the construction of roadway, water and sanitary utilities, and storm water drainage associated with the development of thirty-seven timeshare units in the Williamsburg Plantation, James City County, Virginia. Additionally, this project includes construction of modifications to an existing stormwater management/ best maintenance practice known as VDOT Facility "G". The modifications were previously approved by the Environmental Division on 12/30/99.

The project area presently contains a temporary sediment basin to serve the Clubhouse facility. This basin will be utilized to begin construction of Phase I of the project (See sheet 3a). Upon completion of VDOT Facility "G" the temporary sediment basin is to be closed and the existing storm system from the Clubhouse extended through the project area. VDOT Facility "G" shall serve as the temporary sediment basin for Section 5 (Phase II) during construction activities. Following construction, Facility "G" shall continue to function as a SWM/ BMP extended detention dry pond.

The storm system proposed with Section 5 is the trunk line for the remainder of the development draining toward Facility "G". Thus, the system has been designed for the future drainage contribution of the remainder of the Williamsburg Plantation project draining through the system. Additional Sections shall be connected to the trunk line at structure #7.

Table 2

Worksheet for BMP Point System

A. STRUCTURAL BMP POINT ALLOCATION

ВМР	BMP Points	Fraction of Site Servedby BMP	Weighted _BMP Points
EX. WET POND DRY POND	<i>10</i> 9	27.25+6.72 × <u>75.65,</u> = × 19.66+27.34/75.65 =	<u>4.49</u> 5.59
DRY POND	4	x	1.01

B. NATURAL OPEN SPACE CREDIT

Fraction of Site		Natural Open Space Credit		Points for Natural Open Space
14.5/75.65	x	(0.1 per 1%)	=	1.92
	X	(0.15 per 1%)	=	

TOTAL NATURAL OPEN SPACE CREDIT: 1.92

C. TOTAL WEIGHTED POINTS

BMP Point Tabulation for Williamsburg Plantation 3/22/00

Notes:

- 1. The total site area of Williamsburg Plantation is 75.65 AC following the condemnation of 1.43 AC by VDOT for the construction of Route 199.
- 2. During the development of Regency at Longhill II, adjacent to Williamsburg Plantation, the existing wet pond was enlarged and redesigned to accommodate additional flow from Regency. The total drainage area to the 10 point wet pond is 33.97 AC (as approved with the Regency development), of which 27.25 AC is onsite and 6.72 is off-site contribution.
- 3. The dry pond shared with VDOT was redesigned (and approved) in the spring of 1999 to provide water quality and attenuation for both the VDOT and Plantation drainage areas. The total drainage area to this 9-point facility is 47 AC, of which 19.66 is on-site and 27.34 is off-site contribution.
- 4. The open space quantity has been revised to reflect the 1.43 AC loss. Additionally, the 0.5 AC area just north of Section 3 has been removed from the open space number. This area is contains many dead trees and bushes. The developer wishes to landscape it during a future submittal. The revised open space number is 14.5 AC.
- 5. The future BMP is to be a dry pond. Conservatively, this pond is estimated at 4 points.

S:\UOBS\7555\10\WORDPROC\DOCUMENT\BMP Point Tabulation for Williamsburg Plantation.doc

Hydraflow Storm Sewer Tabulation

Hydraflow Storm Sewer Tabulation

						1	
Pro		24	23	22		Line	Station
Project File:		23	22	21		T To	ion
- 1		42.0	222.0	59.0	£		Len
755514sys1-32101.stm		0.23	0.68	0.35	(ac)	incr	Drng
\$1-3210		0.23	0.91	1.26	(ac)	Total	Drng Area
)1.stm		0.90	0.56	0.61	(0)		Rnoff
-		0 0.21	6 0.38	1 0.21		Incr	
-	•						Area x C
		0.21	0.59	0.80		Total	C
I-D-F File:		5.0	10.0	10.0	(min)	Inlet	Tc
- 1		5.0	10.0	11.2	(min)	Syst	
JCCstormsewer.IDF		7.1	6.0	5.7	(in/hr)	:	Rain
nsewer.		1.47	3.51	12.10	(cfs)		Total flow
튀		15.75	8.99	22.81	(cfs)		Cap
-		2.33	3.71	5.01	(ft/s)		Ve!
		15	15	24	(in)	Size	
		Ċυ,	<u> </u>				Pipe
		5.95			(%)	Slope	
Total n		89.30	86.80	82.50	(₹	ďρ	Invert Elev
Total number of lines: 24		86.80	82.50	81.90	a	Dn	Elev
of lines:		89.79	87.55	83.73	(ft)	Ч	
24					5	0	HGL Elev
		87.87	83.81	83.71	(£)	Dn	ev
Run		94.14	94.14	90.16	(£)	ę	Grnd /
Run Date: (94.	90.	88.9	-		Grnd / Rim Elev
03-21-2					'		ev
2001		16-15	15-14	14-13			Line ID
03-21-2001			1 6 1	16 17 18	16-14 16-15 16-15	15-14-13 16-15-14-13	14-13 15-14 16-15

5248 Olde Towne Road, Suite 1 Williamsburg, Virginia 23188 (757) 253-0040 Fax: (757) 220-8994

PROJECT 1	UMBRG	FLNT	JEC 5	
PROJECT NO	o. <u>755</u>	5-12		
SUBJECT _	SPEEAL	CALC	<u> </u>	
SHEET NO.	/	OF	2.	

ALL SUMPLOCATIONS

CALCULATED BY_DPU DATE 7/28/66 121-34 L=2.5 PEFF = L + 1.8W = 2.5 + 1.8(2) DA = 0.36AC. 0=0.75 dethe intet, v = 0.17 46" 2K Lie 4 in the BIVOT Q10 = 1,08CFS spread, T = 0, T = 0.17 = 8.5' or 98#3 -> DI-3A 69#4 D1-3B, L=4 DA=048AC PEFF = 7.6' C + 0.176 d = 0.18'26" OK 110 = 4 in, he Q10 = 1.44 CFS T= 0.18/0.010 = 11.3 OK B/C @ TUMPSTER SS#5 DI-3A Per = 6.1 DA = 0.34 AC C = 0.75d=0.16' ox Lio=4 with T- 0.16/0.018 = 8.91 OK Q10=1,02 CFS 55#6 + 13/2 BA 13⁴ (0 DI-38, L=6 TDA=0.54AC PEFF = 916 C= 0.75 d=0.17' OK 1,0=4 in 1,400 7= 0.17/0.017 = 10.0 OK Q10=1.62 95#6→71-378, L=6

5248 Olde Towne Road, Suite 1 Williamsburg, Virginia 23188 (757) 253-0040 Fax: (757) 220-8994

PROJECT WMERG MANT	JEC D
PROJECT NO. <u>1555-12</u>	
SUBJECT SPREAD MICS	>
SHEET NOOF	2
CALCULATED BY 1 A-11/	DATE 7 28 M

AL SIMPLICATIONS	CALCULATED BY 14W
SS# 7A DI-	3A
DA = 0.40 AC PEF	F=6.1
	0.17' OK 0.17/2018 = 3.95
Q16 = 1,12 cfs	0.11/0.043 = 3.98
	SS#7A → DI-

TEMPORARY SEDIMENT BASIN CALCULATIONS

5248 Olde Towne Road, Suite 1 Williamsburg, Virginia 23188 (757) 253-0040 Fax: (757) 220-8994

PROJECT WMBG PLANT. SECT 5
PROJECT NO. <u>1555-12</u>
SUBJECT TEMP. SEDIMENT BASIN
SHEET NO OF
CALCULATED BY DPW DATE 8/7/00

CALCULATED BY UPW DATE BITIO
EXISTING SWM/BMP FACILITY IS TO BE MODIFIED AS PART OF THIS PROJECT. FACILITY WILL SERVE AS EROSION AND SEDIMENT CONTROL BASIN DURING CONSTRUCTION ACTIVITIES.
PROJECT AREA = 6.0 AC t
ADDITIONAL RECREATION CENTER AREA = 2.0 AC +
TOTAL DA = 8.0 ACT
\rightarrow 134 cy/AC rod for temp basin - $\frac{1}{2}$ wet and $\frac{1}{2}$ dry 134 cy/AC (8.0 Ac) = 1,072 cy = 28,944 cf Wet rod=14,472 cf = Dry rod
→ USING APPROVED CALCULATIONS FOR FACILITY MODIFICATIONS: 27,056 CF AVAILABLE @ EL 48.0 → DEWATERING ORIFICE
27,056 c= > 14,472 c= ·· OK
59,620 CF AVAILABLE BIN EL48 & 50 - DEWATERING 59,620 CF > 14,472 CF : OK ORIFICE (2)
FACILITY WILL FUNCTION AS TEMPORARY CONSTRUCTION BASIN

5248 Olde Towne Road, Suite 1 Williamsburg, Virginia 23188 (757) 253-0040 Fax: (757) 220-8994

E-Mail: aes@aesva.com

PROJECT WILLIAMSBURG PLANTATION SEC. 5 PROJECT NO. __7555-12 SUBJECT OUTLET PROTECTION TESIEN SHEET NO. _____ OF __

-			CALCULATED BY	CBL	DATE 10 17 00
Q= 42.2	<fs th="" <=""><th></th><th></th><th></th><th></th></fs>				
* ASSUME	Maximum	TALWATER	CONDITION		
FROM VE	SCH PLATE	3,18,74			
32.25	and the second s	· · · · · · · · · · · · · · · · · · ·			
W-05+0		7.5.			
	0,4(221)		لمسا		7 0662
= 11.3	= 12				
CONTRACTE		PROVIDE	CLOSS T RI	? RAP	APRONJ
APPA SIL	FABRIC 1	n Accorda Ng x zi deer	WCE W/ THE	VESCI	
TAWNSTR	EM EHD	CAPPROV	e outlet was	5 16 W	IDE AT

E S CONSULTING ENGINEERS

AES Consulting Engineers Fax Memorandum

5258 Olde Towne Road, Suite 1 • Williamsburg, Virginia 23188 Telephone: (757) 253-0040 • Facsimile: (757) 220-8994 • Email: aes@aesva.com

☐ Please Comment X Please Reply

Org./Firm: JCC Environmental Division
Date: 3/13/01
Pages Including Cover Page: 2
cc Fax Number:
ility "G"

Comments:

Darryl,

Attached is a copy of Telephone Correspondence with Mr. John Dewell of VDOT. I wanted to make sure you understood the agreements Williamsburg Plantation has made with VDOT. The last iteration of the pond's design has resulted in VDOT allowing the use of the SCS method. John Dewell asked that we further increase the elevations on the emergency spillway and top of dam. I hope this will satisfy your concerns about the use of the SCS method. Additionally, as we discussed and you approved last month, we have eliminated the shallow marsh due to VDOT concerns.

We anticipate sending plans over to your office this Friday with the Overall and Erosion and Sediment Control revisions included. If you have any questions, feel free to give me a call.

Thanks.

Charles Records

Confidentiality Note: The documents accompanying this fax may contain confidential information. This information is intended only for the use of the individual or entity named on the transmission sheet. If you are not the intended recipient, you are hereby notified that any disclosure, copying, distribution, or the taking of any action in reliance on the contents of this faxed information is strictly prohibited, and that the documents should be returned to AES Consulting Engineers. If you have received this fax in error, please notify us by telephone immediately at the number above so that we can arrange for the return of the original document at no cost to you.

Telephone/Visit Correspondence Report

DATE:

CLIENT:

3/12/01

PROJECT NAME:

VDOT Facility "G"

PROJECT NO:

7555-6

Williamsburg Plantation

PERSON/TITLE

Printer weepings in so sees sold

TALKED WITH:Mr. John Dewell

Senior Hydraulic Engineer

(F) 804 225 3686

SUMMA	\RY	OF	CONV	/ERSA	TION

Mr. Dewell was responding to revised drainage calculations by AES for VDOT Facility "G" treating drainage from both Williamsburg Plantation and Route 199. Mr. Dewell identified that in comparing the AES and VDOT calculations for the pond, that the VDOT calculations were slightly more conservative. He requested and AES agreed that modifications be made to increase the elevations of the emergency spillway (from 51.25 to 52.0) and width (from 30' to 20') and the top of dam (from 53.0 to 54.0). Mr. Dewell stated that the pond footprint was to remain the same as shown on the approved plans dated 9-28-99 and the existing principal spillway would not require modifications. Mr. Records asked if the existing 4" orifice could be used to dewater the temporary sediment basin, resulting in a longer dewatering time (32) hr), and Mr. Dewell agreed with using the existing 4" orifice.

CONCL	.บรเดก	I/ACT	ION:
-------	--------	-------	------

Per our conversation summarized above, the final construction documents for this facility are being prepared. Mr. Dewell does not require a set(s) of plans and they only need to be submitted to Mr. P.K. Das, Williamsburg Residency.

SPECIAL INSTRUCTIONS: CC: DARRIL LOOK, 259 4032 P.K. DAS, 253-5148	\square We Phoned	X They Phoned
P.L. DAS, 253-5148	☐ We Visited	☐ They Visited
	SUBJECT AREA:	
	AES REPRESENTAT	rive(s):
MISCIENDINGITEI MIGHT REPORT ALL		

The Bush Companies The Plantation Group, LLC 4029 Ironbound Road Suite 200 Williamsburg, VA 23188 Tel 757/220-2874 Fax 757/229-2542

transmittal

To:

DARRYL COOK

JAMES CITY COUNTY

ENVIRONMENTAL DIVISION

From:	KEN YERBY, CCM		Date:	02/22/01	
Re:	WILLIAMSBURG PLA	ANTATION	Pages:	9	
	SECTION 5 SITEWOR	K UNITS 97-133	Job:	480	
	VDOT EXTRA				
Urge	ent For Review	For Ap	oproval	Please Reply	For Your Use

FES EXISTING EARTHEN DAM EVALUATION REPORT DATED 2/21/2001

CC: RW/FILE

FOUNDATION ENGINEERING SCIENCE, INC.

- Geotechnical Engineering [Drilling; Foundation, Retaining Wall & Pavement Design]
- Environmental Management [Phase | & | |, Asbestos and Lead Paint Samplings]
- Construction Materials Testing & Inspection [Quality Control & Quality Assurance]
- Foundation Settlement & Pavement Evaluations
- Value Engineering During Design & Construction

Mr. Ken Yerby C/O Williamsburg Plantation, Inc. 4029 Ironbound Road, Suite 200 Williamsburg, Virginia 23188

February 21, 2000

Re:

Existing Earthen Dam Evaluation Report

Williamsburg Plantation, Phase 5 James City County, Virginia FES Project No. 1-9C120.115

Dear Mr. Yerby:

Pursuant to your request and verbal authorization, an experienced project engineer with Foundation Engineering Science, Inc. (FES) visited the project site on February 19, 2001. The specific purpose of this visit was to perform auger borings within the existing earthen dam located at Williamsburg Plantation, Phase 5 in James City County, Virginia.

1.0 SITE OBSERVATIONS AND FIELD EXPLORATION

During our site observation, four (4) auger borings were performed within the existing earthen dam. The auger borings were performed to depths ranging from six (6) to seven and one half (7.5) feet below the existing grades [from the crest of the earthen dam]. AB 2.3 · 4 W = 3 = TAKEDE

TOE. The soil conditions encountered at the auger borings tabulated bellow

J 4 E

LOCATIONS	SOIL LAYER	SOIL DESCRIPTION	DEPTH RANGE (FEET)	UNIFIED SYMBOL
AB-1	1	Brown, silty sand with trace clay "TOPSOIL"	0 - 0.5	SM
	2	Brown, moist silty SAND with trace clay	0.5 – 3	SM
	3	Gray to brown silty SAND with trace organic matter at depth 5	3 - 6	SM
	4	Brown, moist silty SAND with trace clay	6 – 7.5	SM
AB-2	1	Brown silty SAND "TOPSOIL"	0 - 0.5	SM
	2	Light brown silty SAND with trace clay	0.5 – 3.0	SM
	3	Brown, saturated clayey SAND	3 - 6	SC
AB-3	1	Brown silty SAND with trace clay "TOPSOIL"	0 - 5	SM
	2	Brown silty SAND with trace clay	0.5 – 1.5	SM
	3	Gray to brown silty SAND	1.5 - 6	SM

Existing Earthen Dam Evaluation Report Williamsburg Plantation, Section Five James City County, Virginia FES Report No. 1-9C120.115

LOCATIONS	SOIL LAYER	SOIL DESCRIPTION	DEPTH RANGE (FEET)	UNIFIED SYMBOL
AB-4	1	Brown silty SAND	0 – 0.5	SM
	2	Gray to brown, moist to saturated, silty SAND	0.5 - 6	SM

The ground water table was three (3) feet below existing ground in the auger boring AB-2, AB-3 and AB-4 and the water table was not encountered in the borings AB-1.

2.0 LABORATORY TESTING PROGRAM

The soil conditions encountered in the auger borings performed were arranged in three (3) to four (4) layer soils configurations. Additionally, the soils were classified by an experienced project engineer in general accordance with the Unified Soil Classification System (USCS) in general accordance with ASTM D-2487 and D-2488. The soils encountered in the borings performed were subjected to grain size determination [Passing No. 200 Sieve] and natural moisture content tests. The laboratory test results are tabulated below.

LOCATION	APPROX. SAMPLE	NATURAL MOIST.	#200 SIEVE		RBERG UTS	USCS	OPT. MOIST.	MAX. DRY	CBR VALUE
	DEPTH (Feet)	CONTENT (%)	(%)	LL (%)	PI (%)		CONTENT (%)	DENSITY (pcf)	(%)
AB-1	1 – 3	14.7	35.5			SM			
	3 – 4	14.2	38.5			SM			T
	4 – 5	13.8	34.7			SM			
	5 – 6	14.5	41.5			SM			
	6 – 7	19.7	37.2			SM			
	7 – 7.5	20.0	40.0			SM			
AB - 2	0 - 1.5	19.2	32.4			ŠM			
	1.5 - 3	18.6	24.2			SM			
	3 – 5.5	23.6	39.5			SC			
	5.5 – 6	46.7	49.2			SC			
AB-3	0 – 1.5	20.1	36.7			SM			
	1.5 – 4	17.4	28.4			SM			
	4 – 6	15.4	41.9			SM			
AB-4	0 – 1	23.0	37.3			SM			
	1 – 2	19.0	36.7			SM			
	2 – 4	19.4	22.7			SM			
	4 – 6	12.9	33.1			SM			

Based on the laboratory test results, the majority of the soils encountered in the auger borings consisted of cohesion-less silty sand (SM) and clayey sand (SC).

Existing Earthen Dam Evaluation Report
•Williamsburg Plantation, Section Five
James City County, Virginia
FES Report No. 1-9C120.115

FES appreciates the opportunity to be of service to Williamsburg Plantation, Inc. on this important project and looks forward to its successful completion. Should you have any questions regarding this report, please do not hesitate to contact the undersigned.

Respectfully submitted,

FOUNDATION ENGINEERING SCIENCE, INC.

Idres Hawarry

Project Engineer

Raja S. Elawar, P.E

Principal Engineer

A Reg. No. 26383

Attachment:

Figure 1 - Borings Location Sketch

Borings Profile Sheets

XCopies:

(1) Client

C:\companyOLD Files\1999\1-9C120.115

FOUNDATION EN GEOTECHNICAL, ENVIRONMEN	GINEERING	S SCIENCE, INC. TION MATERIALS TESTING	CONSTRUCTION MATERIALS TESTING SERVICES
NEWPORT	CANON BOULEV NEWS, VIRGINIA	S 23606	WILLIAMSBURG PLANTATIONS, SECTION 5
PHONE: 757	-873-873-4113 FA	X: 4114	JAMES CITY COUNTY, VIRGINIA
DATE:	SCALE:	FES PROJECT NO.	FIGURE – 1
FEBRUARY 19, 2001	N/A	1-9C120.115	AUGER BORING LOCATION SKETCH

FOUNDATION ENGINEERING SCIENCE, INC. · Geotechnical Engineering

· Environmental Management

11843-B Canon Boulevard Newport News, Virginia 23606 Phone: 757-873-4113 Fax: 757-873-4114

AB-4

PROJECT NAME:		Materials Te	sting En ons Section Five	nail: relawar@fes	va.com	PROJECT NO.	. 10	Sheet 1 o
CLIENT:	William	DRILLING MET						
PROJECT LOCAT		City County, V			Encountered			
BORING LOCATIO		-				STATION NO.:	1400	Litouritereu
ELEVATION (Feet) DEPTH (Feet) SOIL LEGEND & SAMPLE TYPES SAMPLE NO. SOIL CLASSIFICATION THE CLASSIFICATION OF THE CONTROL OF T					SPT, N VALUE OR RQD %	STANDARD PENET TEST N-VALU (Blows/Ft)	JE .	HOLE COMPLETION & REMARKS
49.0 0	SM	Brown silty 8	SAND with trace clay	"TOPSOIL"	1	10 20	30 50 80	
48.5	SM	Gray to brow 2-4	vn silty SAND with tra	ce organic at depth			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
							1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
45							1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
- 5 -							1	
							1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
							1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
OMPLETION DEPT ATE BORING STAI ATE BORING COM NGINEER/GEOLOG RILLING CONTRAC	RTED: 2/1 IPLETED: 2/1 GIST: IH	9/01 9/01	Sample Types: Auger Cutting Vane Shear SPT	UD Penetrometer Rock Core	Remarks	<u> </u>		

FOUNDATION ENGINEERING SCIENCE, INC. Geotechnical Engineering Environmental Management Handle Science, INC. 11843-B Canon Boulevard Newport News, Virginia 23606 Phone: 757-873-4113 Page 1843-B Canon Boulevard Newport News, Virginia 23606 Phone: 757-873-4113 Page 1843-B Canon Boulevard Newport News, Virginia 23606 Phone: 757-873-4113

AB-1

PROJE	CT N/				Materials Les	ons Section Five	ail: relawar@fesv	/a.com	BBO ISCT NO :	1	Sheet 1 of
CLIENT	<u></u>				burg Plantation				PROJECT NO.:		9C120
		CATION			City County, V			· · · · · · · · · · · · · · · · · · ·	DRILLING METHO		
		ATION:		B-1	only County, V	ngina	· · · · · · · · · · · · · · · · · · ·		OBSERVED G.W.	1.1 100	ot Encountered
		Γ	Γ.	1				Т —	STATION NO.:		
ELEVATION (Feet)	o DEPTH (Feet)	SOIL LEGEND & SAMPLE TYPES	SAMPLE NO.	SOIL CLASSIFICATION		MATERIAL DESCRI	SPT, N VALUE OR RQD %	STANDARD PENETRA TEST N-VALUE (Blows/Ft)	TION 50 80	HOLE COMPLETION & REMARKS	
55.0	Ŭ			SM	Brown silty S	AND with trace of cla	y "TOPSOIL"				
54.5				SM	Brown, moist	t silty SAND with trace	e clay			1.1 4 1 2 2 1 1 1 1 1 1 1 1 1 2 1 4 1 1 1 2 1 4 1 1 1 1 2 1 4 1	
									3 + 1 1 1 1 1 1 1 1 1 1	1 4-1 1 P 4 1 1 1 1 1 1 1 P 4 1 1 1 1 1 1 1 P 4 1 1 1 1 1 1 1 1 1	
	,										
52.0	-			SM	Gray to brown depth 5	n silty SAND with trac	e organic matter at				
	•										
50	5 -		. *				•			# # 1 # 1 # 2 1 1 # 2 1 1 # 3 1 1 # 4 1 1 # 4 1 1 # 4 1 1	
49.0	1			SM	Brown silty SA	AND with trace clay			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	F 1 E B	
_	_		-						1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
-										2 1 1 3 1 7 7 3 5 4 1 1 1 8 3 1 4 1 8 1 1 2 3 5 5 1 4 1 8 1	
								-		8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
2011											
COMPLE DATE BO	RING	DEPTH:	FD:		feet 9/01	Sample Types:		Remark	s:		
DATE BO	RING	COMPL	ETE	D: 2/1	9/01	Auger Cutting	UD				
ENGINEE DRILLING	R/GE	OLOGIS	ST: OR:	IH FE	S	∬ Vane Shear X SPT	Penetrometer Rock Core				
Liniage of											

LOG OF BORING 1-9C120.GPJ FES.GDT 2/21/01

FOUNDATION ENGINEERING SCIENCE, INC.

11843-B Canon Boulevard

· Geotechnical Engineering · Environmental Management

Newport News, Virginia 23606
Phone: 757-873-4113 Fax: 757-873-4114
Email: relawar@fesya.com

· Construction Materials Testing

AB-2

PROJE					burg Plantations Section Five	ian. relawar@iesv	a.com	PROJECT NO.: 1	-9C120
CLIENT	:		V	/illiams	burg Plantation, Inc.			DRILLING METHOD: H	land Auger
PROJEC	CT LO	CATION	1: Ja	mes C	City County, Virginia			OBSERVED G.W.T.: N	lot Encountered
BORING	LOC	ATION:	Α	B-2				STATION NO.:	
ELEVATION (Feet)	o DEPTH (Feet)	SOIL LEGEND & SAMPLE TYPES	SAMPLE NO	SOIL CLASSIFICATION	MATERIAL DESCR	IPTION	SPT, N VALUE OR RQD %	STANDARD PENETRATION TEST N-VALUE (Blows/Ft) 10 20 30 50 80	HOLE COMPLETION & REMARKS
48.0	- 0 -			SM	Brown silty SAND "TOPSOIL"			10 20 30 30 30 30	
47.5—				SM	Light brown silty SAND with trace	clay			
·									
45									
43.0	5			SC	Brown clayey SAND				
								1	
								1 1 1 2 2 1 1 1 2 4 1 1 1 2 4 1 1 1 2 4 1 1 1 2 4 1 1 1 2 4 1 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 4 4 4 4 4 4 4 4	
COMPLE DATE BO DATE BO ENGINEE DRILLING	RING RING R/GE	START COMPL OLOGIS	ED: .ETE ST:	2/1	9/01 9/01 Auger Cutting Vane Shear S	UD Penetrometer Rock Core	Remarks:		

LOG OF BORING 1-9C120 GPJ FES GDT 2/21/01

AB-3

FE	S	FO ⋅ G	UNE	ATIO hnical	N ENGINE Engineering	EERING SC	IENCE, INC	anon Bou				AE	
					l Manageme Materials Te		Newport N Phone: 757 Email: rela	7-873-411	3 Fax	506 : 757-873-4	114	Sheet 1 o	
PROJE	CT NA	AME:	V	Villiams	burg Plantat	ions Section I				PROJECT	-9C120		
CLIENT	:		٧	Villiams	burg Plantat	ion, Inc.			<u> </u>	DRILLING	METHOD: Ha	and Auger	
PROJE	CTLC	CATIC	N: J	ames C	City County, \	Virginia						ot Encountered	
BORING	G LOC	CATION	I: A	B-3	· · · · · · · · · · · · · · · · · · ·				<u> </u>	STATION			
		** (0		z						10171110111	10		
ELEVATION (Feet)	DEPTH (Feet)	SOIL LEGEND & SAMPLE TYPES	SAMPLE NO.	SOIL		MATERIAL D	ESCRIPTION		SPT, N VALUE OR RQD %	STANDARD PE TEST N-	VALUE s/Ft)	HOLE COMPLETION & REMARKS	
48.0	- 0 -		 	SM	Brown silty	SAND with trac	e clay "TOPSOIL	n	1	10	20 30 50 80		
47.5—										1 1 1 1 1 1 1 1 1 1	* 1 P. F.		
				SM	Brown silty	SAND withtrace	: CLay			1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
										1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1		
46.5										1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	5.1 (1) -1 -1 (1)		
-				SM	Gray to brov	wn silty SAND]	1 1 1 1 1 1 1 1	3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
					}						1 11111		
										1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
										1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1		
45										1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1		
										1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1		
	İ										. 11111		
											1 1 1 1 1 1 1		
										1 1 1 1 1 1 1			
											1 1 1 1 1 1 1 1 1		
	. 5									1 . 1 . 1 . 1	1 1 1 1 3 3		
										1 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	-										1 1 1 1 1 1 1 1		
										1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
1	†								1	1 1 1 1 1 1 1 1	. F f 1 1 1 1 1 1		
										1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1		
					•					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
										1 1 1 1 1 1 1 1 1	: : : : : : : : : : : : : : : : : : : :		
										1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1		
										1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	: 1 1 1 1 1 1 1		
										1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1		
				.						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1		
				į						1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1		
				-						T & T : 1 F H H	1 1 1 1 1 1 1 1 1 1		
								•			1 1 1 1 1 1 1 1		
										2 1 6 1 1 1 1 1	2 1 1 1 1 1 1		
										1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
OMPLE	TION	DEPTH	1:		feet	Sample Typ	es:		Remark	3:			
ATE BC	RING	COMP	LETE		9/01 9/01	Auger Cu		-					
NGINEE	R/GE	OLOGI	ST:	IH		Vane She	استنا	trometer					
RILLING	COV	ITRACT	TOR:	FES	3	↑ 🛛 SPT	Rock	Core					

WILL PLANTATION - FACILITY G

- 1. WQ Volume 52,889 ft3 cles 48,9

 ½ volume prov. perm. pool 48.0 or 27,056 ft3

 ½ volume ED 26,000 ft3 cles 48,9

 Ex DI @ 49.3 ok

 24 hr release rete or use minimum 3"
- 2. 2 yen catrol ele 52.89 18.5 cfs < 51.8 cfs regd
 - 3. 10 yr- needs to go thry prin. spillway elw 54.8
- 4. 100 yr flow needs to pass thru structure w/ 1' free bd. E.S. could be set @ 54.8

2/27/01 - Mtg to Discuss E+S Cartrol-Dan will need to be rebuilt Rational + SCS storm - 0.65' diff - 10 yr. 1.1 diff - 100 yr

Table A-1. Current Impervious Cover Estimates for the Subwatersheds Within Powhatan Creek Watershed

IC = Impervious Cover	210	209	302	206	205	204	203	202	201	Subwatershed ID
Cover	716.76	1083.19	2850.80	1316.65	1619.19	540.86	849.39	601.41	835.72	Subwatershed Area (ac)
	16.69	25.13	81.30	59.70	26.99	20.35	35.91	18.11	21.70	Road Area (ac)
	20.35	0.32	107.95	29.77	11.96	7.36	9.85	2.63	9.11	Parking Area (ac)
	28.21	13.79	104.72	41.83	22.11	13.96	23.85	5.60	10.00	Building Area (ac)
-	182	138	736	623	449	121	87	72	78	# of houses
	4.01	3.04	23.10	17.13	9.29	7.01	5.26	2.68	2.10	Driveway Area (ac)
	3.94	2.41	18.07	8.46	4.01	2.79	4.26	1.65	2.44	Sidewalk Arca (ac)
	3.48	2.28	15.36	8.90	5.18	1.84	3.08	1.43	1.93	Misc IC (ac)
	76.68	46.97	350.50	165.79	79.54	53.31	82.21	32.10	47.28	Total IC (ac)
	10.7	4.3	12.3	12.6	4.9	9.9	9.7	5.3	5.7	IC (%)

Will Plantation Seet 5 -FACILITY G Dam Design

1. VDOT - Concerned about raising the dom

- " permonent water in bottom

- Don't went to have too much water because of lack of impervious core
- 3' high riser structure
- Prefer no micro pool

We can live w/out a permanent pool-WQ orifice could be @ elw 47.2 VPOT will maintain the pond

Pond will be rerun

- criteria - keup riser \le 3'

- no micropool

. no permanent pool

- weter gust. orifia e ele 47.0

- emu spillway @ 10 gr. elev

- strive to keep max. flooded depth to 4'

Developer will bore don to determine if core trench, impervious core present - 2 borings

Sediment Basin - how is this hendled - meeting to determine how this will be hondled.

Memorandum

DATE:

January 3, 2001

TO:

Quinton Elliott - Virginia Department of Transportation

FROM:

Charles Records, Richard Costello - AES Consulting Engineers

SUBJECT:

Williamsburg Plantation/VDOT Joint Facility "G"

OVERVIEW & SUMMARY

We have shown the existing VDOT Pond and four (4) different sets of information for the Joint Pond. The 1994 MMM Pond design shown here was prepared then as a joint pond in response to pond site concerns raised by Williamsburg Plantation (WP) but never incorporated into VDOT Plans. Eventually WP's approved pond site from the 1986 Master Plan was condemned and used by VDOT for their Pond for Route 199. Since there is no other natural site for a Pond, VDOT agreed during condemnation negotiations in 1999 that this site should be a joint Pond. In 1999 AES designed a joint pond in accordance with SCS requirements per JCC standards. This information previously submitted to VDOT has raised many concerns due to its high flows and high operating (elevation) levels. This memo is written to show the significant differences in design results due to the two different methods (VDOT/Rational & JCC/SCS) used to design and calculate pond operating characteristics. This memo also shows the difference water quality causes in the pond design since JCC required additional water quality measures to be incorporated into the pond. The major purpose of this memo is to show the major differences in joint pond operating characteristics between the JCC SCS method and the VDOT Rational Method.

We have shown the major characteristics of the Ponds in a table on the next page. The current VDOT pond is shown as Existing. The MMM joint Pond designed in 1994 is labeled as Pond 1. The major differences from the MMM design for the other joint Ponds are due to water quality requirements and differences in runoff between the two methods. The pond is larger due to more runoff from the SCS method (that larger size is a given and is used with the Rational designs). Due to water quality issues, the pond always holds 1 foot of water because the elevation of the lower orifice was raised 1 foot. Also the pond drains slower due to the primary orifice being reduced in size from 9SF to 2.5 SF. In Pond 1A AES has shown how the pond operates by the Rational method assuming the 1' higher low flow orifice. Pond 2 shows how the pond operates by the Rational Method also assuming the smaller high-level orifice. Pond 1A & 2 calculations are attached to this memo.

Pond 2A is what was submitted last year to VDOT & JCC. Pond 2A is the same as Pond 2 but was previously designed using the SCS/JCC methodology. This table shows the significant differences in operating characteristics due to SCS & JCC methodology.

In summary I believe there is not significant differences between the MMM joint pond design (Pond 1) and the more recent AES designs (Pond 1A & 2) other than the 1 foot of standing water. All ponds drain down to their 4" diameter low flow orifices in less than 24 hours.

Stormwater Management Pond Highwater and Peak Outflow Value Comparison Tables

		1218 Million and	t I can Ouijioi	v value Comp	varison Labies	
Pond Number		Existing	1	1A	2	2A
	Storm	MMM	MMM-1994	AES-2000	AES-2000	AES-1999
	Event	(Rational)	(Rational)	(Rational)	(Rational)	(JCC/SCS)
	(yr)	No Orifice	9 SF Orifice	9 SF Orifice	2.2 SF Orifice	
Highwater Elevation	2-yr.	50.1	50.6	51.1	52.1	52.9
(feet)	10-yr.	50.4	51.2	51.9	53.4	54.8
	25-yr.	50.7	51.9	52.3	53.8	55.5
	100-yr.	51.3	53.2	53.1	54.2	56.4
Spillway Elevations						
Low flow Orifice		47	47	48	48	48
High Flow Orifice		None	49.4	50	50	50
Principle		49.4	53	53	53	53
Emergency		54.1	54.1	55.4	55.4	55.4
			,			
Peak Outflow from Pond	2-yr.	No info.	34.3	35.7	15.7	18.5
(cfs)	10-yr.	No info.	50.2	51.7	30.2	114.3
	25-yr.	No info.	62.6	59.3	45.6	148.9
	100-yr.	No info.	87.0	71.4	69.0	242.6

Note: The drainage area has remained the same for all calculations except for existing, which is approximately 50% of the others. The Existing pond has the least amount of volume with #1's pond volume being somewhat smaller than the others, which are all the same size.

FURTHER EXPLANATION

The purpose of this memo is to answer outstanding issues concerning the above referenced project in VDOT's in-house-review. As you are well aware, various BMP design iterations that have been proposed for this project. The designs have been compared on the previous page.

- 1. The 1994 MMM Design Rational Method / 9 SF orifice
- 1A The 2000 AES Design (for this memo) Rational Method / 9 SF orifice
- 2. The 2000 AES Design (for this memo) Rational Method / 2.25 SF orifice
- 2A The 1999 AES Design (prev. subm.)- SCS/JCC Method / 2.25 SF orifice

In an effort to bring closure to these issues, this memo and Calculations #1A and #2 are attached. Calculation 2A was previously submitted and really is not germane to this review. The in-house VDOT memo raised the following issues of concern: safety, liability, structural integrity and drainage calculation discrepancies. These issues referred to Pond #2A, which is the SCS/JCC design. The first to be reviewed is the drainage discrepancies, which indirectly affect all of the VDOT issues.

VDOT engineers are concerned with calculation discrepancies in comparison of Pond 1 MMM to Pond 2A AES- (JCC/SCS). Calculation 2A was designed per the James City County Stormwater Management Design Standards using the SCS methodology for determining flowrates. As is obvious when reviewing the table, SCS methodology is extremely conservative when compared to the Rational method. Iteration1A & 2 are based upon VDOT design guidelines using the Rational Method. From a safety standpoint, the side slopes and the pond depth have either remained the same or been improved when compared to the VDOT design (#1 above). The proposed AES basin has side slopes ranging from 2:1 to 2.5:1 and the original VDOT design calculations for the entire pond indicate it is to have 2:1 side slopes. The side slopes in the VDOT right-of-way are not disturbed and remain unchanged. Although the AES designs have added a sediment forebay per JCC requirements, the depth of the pond has not changed throughout all of the iterations of the basin from the first MMM joint design. The existing VDOT guardrail along Route 199 protecting the basin is not shown on the AES plans.

The VDOT liability associated with this basin (Calculation 1A &2) are approximately the same as the original Pond (Calculation 1) with stormwater elevations changing less than 1 foot for the maximum design storm.

Structural integrity of the dam was another concern. The extension of the riser to elevation 53 will not compromise the integrity of the base of the principal spillway. The integrity of the dam structure will remain the same as it has been. The dam can easily withstand a permanent pool of 1.0' of water, and the phreatic line associated with a pool depth of 1' will remain well under the toe of the existing dam on the downstream side. During the 100 year storm Design 2 is only 1' higher that design 1, which is not significant. The pond drains down within 24 hours to the 4" low flow orifice so infiltration will not occur through the dam. Lastly pertaining to maintenance concerns, there is an orifice at the elevation needed to drain the pond entirely pond when needed.

If you have any questions or concerns, please feel free to contact Richard Costello or me at 253-0040. I look forward to working with you to complete this project.

S:\JOBS\7555\06\WORDPROC\DOCUMENT\755506L09.cbr.doc

Italics by WA Cololo

DRAFT COMMENTS (for internal use only)

Subject: Williamsburg Plantation Section V (SP-103-00)

James City County

- 1. The proposed basin has 2:1 side slopes on all sides (slopes should be no steeper than 3:1 for mowing) and will have a ponded water depth of 8 to 9 feet deep. (ponded depth should be no greater than 3 to 4 feet due to the hazard) This would greatly increase any liability. Existing slopes are all 2:1. The slopes that are revised (which are all outside of the R/W) are flattened to 2.5:1. During the 100yr storm the existing Pond is 4.3'deep. The proposed pond (not including the forebay) will be 7.2 deep. 2' is due to the increased drainage area, 1' is due to the 4' orifice being raised 1' and the remaining 1' due to the upper orifice being 2.2SF in conjunction with the primary spillway being raised 3'.
- 2. The emergency spillway should be armored. (rip rap over filter cloth or paving). When calculations are done using the Modified Rational Method no water goes over the emergency spillway, therefore armoring is not required.
- 3. The computations do not match the plans. The actual performance of the basin is unknown. We have attached revised calculations using the Modified Rational Method. The other calcs were what JCC requires.
- 4. The basin will be wet if the 4"orifice is raised to elevation 48'. The volume of storage up to elevation 48' should not be included in the routing computations. Correct, we raised the orifice at the last moment rather than argue with JCC any more. With our current water quality points for the project we anticipate being able to lower the orifice back to 47 is VDOT desires.

- 5. The basin as proposed will have a 1'+/- permanent pool depth covering 0.7+/- of an acre. This would be an on going maintenance problem and a mosquito breeding pool. See previous comment.
- 6. There are no structural details on how the existing riser is proposed to be modified. The connection between the existing structure and the proposed needs to be shown. Will the existing foundation support the added weight/height of the riser? The connection will be 4 rebar in the corners, which will be added to the plans. The existing foundation is 4' below grade, and the added weight is only 250 psf, which is not significant for this structure that is founded approximately 6' below the original ground at this location.
- 7. The integrity of the dam needs to be addressed. (bottom of micropool to emergency spillway is 13.7', to top of dam 15.7') The existing basin was designed as a dry basin and not intended to have a permanent pool, so infiltration through the dam is a concern. The volume of water that is proposed to go to the proposed basin will almost double, this greatly increases the chance of failure. The dam should be rebuilt under our current criteria. (clay core, concrete cradle under pipe, flatter slopes etc.) The actual dam is raised to 57.4 to deal with the JCC/SCS storm, however it actually does not need to be raised at all from 56 to deal with 100 year Rational Storm as the maximum water level is 54.2 (that is 1.8' of freeboard). If 1' of water is allowed to remain in the pond no impact from the revised phreatic line will occur (however as noted above the 1' of standing water can probably be eliminated.
- 8. Downstream liability needs to be addressed. No significant change.
- 9. A 100yr. Flood elevation needs to be established around the basin, upstream of the basin and downstream of the dam. It is not significant as the pond is well below the road and drains to the swamp which is also well below the road.

10. What effects will the backwater from the basin have on drainage structures under Rte. 199? None, whatsoever, 100 year level is at 54.2. Surface flow from the north side of the road enters a catch basin at elevation 61 and drainage from the median at elevation 64 and that from the from the south side even higher. The invert the 36" pipe entering the catch basin nearest the pond is 53.3 so head conditions will not be a problem.

STORMWATER MANAGEMENT/ BMP CALCULATIONS FOR DRY POND WITH SHALLOW MARSH

COMBIMED FACILITY
FOR
WILLIAMSBURG PLANTATION
AND
VDOT 199 – FACILITY "G"

Prepared By:
AES Consulting Engineers
5248 Olde Towne Road, Suite 1
Williamsburg, Virginia 23188
Submitted: February 26, 1999
Revised: January 3, 2001

	<u>, </u>	_								Page 1
Hýd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Volume (cuft)	Return period (yrs)	Inflow hyd(s)	Maximum elevation (ft)	Maximum storage (cuft)	Hydrograph description
1	SCS Runoff	51.8	1	733	225,039	2				2 YEAR PRE-DEV
2	SCS Runoff	116.2	1	733	482,602	10				10 YEAR PRE-DEV
3	SCS Runoff	151.1	1	732	624,143	25				25 YEAR PRE-DEV
4	SCS Runoff	216.2	1	732	891,574	100				100 YEAR PRE-DEV
5	SCS Runoff	98.1	5	725	346,869	2				2 YEAR POST-DEV
6	SCS Runoff	183.5	5	725	648,925	10				10 YEAR POST-DEV
7	SCS Runoff	227.0	5	725	806,819	25				25 YEAR POST-DEVE
8	SCS Runoff	305.6	5	725	1,097,217	· ·				100 YEAR POST DEV
10	Rational	64.2	1 .	31	179,004	2		**********		2 yr storm
11	Rational	90.9	1	31	253,600	10				10 yr storm
12	Rational	105.4	1	31	294,121	25				25 yr storm
13	Rational	128.5	1	31	358,397	100				100 yr storm
15	Reservoir	18.5	5	755	341,056	2	5	52.89	187,468	2 YR POST DEV ROU
16	Reservoir	114.3	5	740	643,103	10	6	54.81	263,700	10 YR POST DEV ROI
17	Reservoir	148.9	5	735	800,994	25	7	55.53	295,605	25 YR POST DEV ROI
18	Reservoir	242.6	5	735	1,091,386	100	8	56.42	336,376	100 YR POST DEV RO
20	Reservoir	15.7	1	78	146,083	2	10	52.14	160,426	2 YR POST DEV ROU
21	Reservoir	30.2	1	72	219,749	10	11	53.41	207,955	10 YR POST DEV ROL
22	Reservoir	45.6	1	66	260,175	25	12	53.75	221,384	25 YR POST DEV ROL
23	Reservoir	69.0	1	60	324,375	100	13	54.15	237,630	100 YR POST DEV RC
25	Reservoir	35.7	1	59	148,993	2	10	51.15	124,894	2 YR POST DEV ROU
26	Reservoir	51.7	1 .	58	223,397	10	11	51.88	151,150	10 YR POST DEV ROU
27	Reservoir	59.3	. 1	58	263,819	25	12	52.32	166,972	25 YR POST DEV ROL
28	Reservoir	71.4	1	59	327,942	100	13	53.06	194,040	100 YR POST DEV RO
	HYDROGE	404	: 15	-18	SCS	MET	top	(PREVIO	IXIY C	UBMITTED) 3
			20	- 23	RAT	İ	1	SF OR		a
			20	-20-	1			Į.	J	-
						012	_	15F 01	41-16	-
				 -						
.										
	file: 75550	000			F file: IC					

IDF file: JCChydrographs.IDF

Run date: 12-01-2000

Rational Method Post-Development Hydrographs

Hyd. No. 10

2 yr storm

Hydrograph type = Rational Storm frequency = 2 yrs Drainage area = 47.0 ac = 2.53 in

Intensity I-D-F Curve = JCChydrographs.IDF

Peak discharge = 64.16 cfs Time interval = 1 min Runoff coeff. = 0.54Time of conc. (Tc) = 31 min Reced. limb factor = 2

Total Volume = 179,004 cuft

Time -	- Outflow	Time -	- Outflow	Time	Time Outflow			
(hrs	cfs)	(hrs	cfs)	(hrs	(hrs cfs)			
0.07 0.08 0.10 0.12 0.13 0.15 0.17 0.18 0.20 0.22 0.23 0.25 0.27 0.28 0.30 0.32 0.33 0.35 0.37 0.38 0.40 0.42 0.43 0.45 0.47 0.48 0.50 0.52 0.53 0.55 0.57 0.58	8.28 10.35 12.42 14.49 16.56 18.63 20.70 22.77 24.84 26.91 28.98 31.04 33.11 35.18 37.25 39.32 41.39 43.46 45.53 47.60 49.67 51.74 53.81 55.88 57.95 60.02 62.09 64.16 63.12 62.09 61.05 60.02	0.60 0.62 0.63 0.65 0.67 0.68 0.70 0.72 0.73 0.75 0.77 0.78 0.80 0.82 0.83 0.85 0.87 0.90 0.92 0.93 0.95 0.97 0.98 1.00 1.02 1.03 1.05 1.07 1.08	58.99 57.95 56.92 55.88 54.85 53.81 52.78 51.74 50.71 49.67 48.64 47.60 46.57 45.53 44.50 43.46 42.43 41.39 40.36 39.32 38.29 37.25 36.22 35.18 34.15 33.11 32.08 31.04 30.01 28.98 27.94 26.91	1.13 1.15 1.17 1.18 1.20 1.22 1.23 1.25 1.27 1.28 1.30 1.32 1.33 1.35 1.37 1.38 1.40 1.42 1.43	25.87 24.84 23.80 22.77 21.73 20.70 19.66 18.63 17.59 16.56 15.52 14.49 13.45 12.42 11.38 10.35 9.31 8.28 7.24			

Hyd. No. 11

10 yr storm

Hydrograph type = Rational Storm frequency = 10 yrs Drainage area = 47.0 ac = 3.58 in

Intensity I-D-F Curve = JCChydrographs.IDF

Peak discharge Time interval Runoff coeff. = 90.90 cfs= 1 min = 0.54 Time of conc. (Tc) = 31 min Reced. limb factor = 2

Total Volume = 253,600 cuft

Time (hrs	Outflow cfs)	Time (hrs	Outflow cfs)	Time (hrs	· Outflow cfs)
0.07 0.08 0.10 0.12 0.13 0.15 0.17 0.18 0.20 0.22 0.23 0.25 0.27 0.28 0.30 0.32 0.33 0.35 0.37 0.42 0.43 0.45 0.47 0.48 0.50 0.52 0.53 0.55 0.55 0.55 0.55 0.55 0.55 0.55	11.73 14.66 17.59 20.52 23.46 26.39 29.32 32.25 35.19 38.12 41.05 43.98 46.91 49.85 52.78 55.71 58.64 61.57 64.51 67.44 70.37 73.30 76.24 79.17 82.10 85.03 87.96 90.90 << 89.43 87.96 86.50 85.03	0.60 0.62 0.63 0.65 0.67 0.68 0.70 0.72 0.73 0.75 0.77 0.80 0.82 0.83 0.85 0.87 0.92 0.93 0.92 0.93 1.00 1.02 1.03 1.05 1.07 1.08 1.10	83.57 82.10 80.63 79.17 77.70 76.24 74.77 73.30 71.84 70.37 68.91 67.44 65.97 64.51 63.04 61.57 60.11 58.64 57.18 55.71 54.24 57.18	1.13 1.15 1.17 1.18 1.20 1.22 1.23 1.25 1.27 1.28 1.30 1.32 1.33 1.35 1.37 1.38 1.40 1.42 1.43	36.65 35.19 33.72 32.25 30.79 29.32 27.86 26.39 24.92 23.46 21.99 20.52 19.06 17.59 16.13 14.66 13.19 11.73 10.26

Hyd. No. 12

25 yr storm

Hydrograph type = Rational Storm frequency = 25 yrs Drainage area = 47.0 ac = 4.15 in

Intensity I-D-F Curve = JCChydrographs.IDF

Peak discharge Time interval = 105.42 cfs= 1 min Runoff coeff. = 0.54Time of conc. (Tc) = 31 min Reced. limb factor = 2

Total Volume = 294,121 cuft

Time -	- Outflow	Time -	- Outflow	Time	Outflow cfs)
(hrs	cfs)	(hrs	cfs)	(hrs	
0.07 0.08 0.10 0.12 0.13 0.15 0.17 0.18 0.20 0.22 0.23 0.25 0.27 0.28 0.30 0.32 0.33 0.35 0.37 0.42 0.43 0.42 0.43 0.45 0.47 0.48 0.50 0.55 0.55 0.57 0.58	13.60 17.00 20.40 23.80 27.21 30.61 34.01 37.41 40.81 44.21 47.61 51.01 54.41 57.81 61.21 64.61 68.01 71.41 74.81 78.21 81.62 85.02 88.42 91.82 95.22 98.62 102.02 105.42 << 103.72 102.02 100.32 98.62	0.60 0.62 0.63 0.65 0.67 0.68 0.70 0.72 0.73 0.75 0.77 0.80 0.82 0.83 0.85 0.87 0.92 0.93 0.92 0.93 1.00 1.02 1.03 1.05 1.07 1.08 1.10	96.92 95.22 93.52 91.82 90.12 88.42 86.72 85.02 83.32 81.62 79.92 78.21 76.51 74.81 73.11 71.41 69.71 68.01 66.31 66.31 64.61 62.91 61.21 59.51 57.81 56.11 59.51 57.81 54.41 52.71 54.41 52.71 54.41 52.71 54.41 52.71 54.41 54.61 44.21	1.13 1.15 1.17 1.18 1.20 1.22 1.23 1.25 1.27 1.28 1.30 1.32 1.33 1.35 1.37 1.38 1.40 1.42 1.43	42.51 40.81 39.11 37.41 35.71 34.01 32.31 30.61 28.91 27.21 25.50 23.80 22.10 20.40 17.00 15.30 13.60 11.90

English⁻

Hyd. No. 13

100 yr storm

Hydrograph type = Rational Storm frequency = 100 yrs Drainage area = 47.0 ac

Intensity I-D-F Curve = 5.06 in

= JCChydrographs.IDF

Peak discharge Time interval = 128.46 cfs = 1 min Runoff coeff. = 0.54

Time of conc. (Tc) = 31 min Reced. limb factor = 2

Total Volume = 358,397 cuft

Time -	- Outflow	Time -	- Outflow	Time	Outflow cfs)
(hrs	cfs)	(hrs	cfs)	(hrs	
0.07 0.08 0.10 0.12 0.13 0.15 0.17 0.18 0.20 0.22 0.23 0.25 0.27 0.28 0.30 0.32 0.33 0.35 0.37 0.38 0.40 0.42 0.43 0.45 0.47 0.48 0.50 0.52 0.53 0.55 0.57 0.58	16.58 20.72 24.86 29.01 33.15 37.29 41.44 45.58 49.73 53.87 58.01 62.16 66.30 70.44 74.59 78.73 82.88 87.02 91.16 95.31 99.45 103.60 107.74 111.88 116.03 120.17 124.31 128.46 << 126.39 124.31 122.24 120.17	0.60 0.62 0.63 0.65 0.67 0.68 0.70 0.72 0.73 0.75 0.77 0.80 0.82 0.83 0.85 0.87 0.98 0.90 0.92 0.93 0.95 0.97 0.98 1.00 1.02 1.03 1.05 1.07 1.08	118.10 116.03 113.95 111.88 109.81 107.74 105.67 103.60 101.52 99.45 97.38 95.31 93.24 91.16 89.09 87.02 84.95 82.88 80.80 78.73 76.66 74.59 72.52 70.44 68.37 66.30 64.23 62.16 60.09 58.01 55.94 53.87	1.13 1.15 1.17 1.18 1.20 1.22 1.23 1.25 1.27 1.28 1.30 1.32 1.33 1.35 1.37 1.38 1.40 1.42 1.43	51.80 49.73 47.65 45.58 43.51 41.44 39.37 37.29 35.22 33.15 31.08 29.01 26.93 24.86 22.79 20.72 18.65 16.58 14.50

Rational Method Pond Routings 2 SF Orifice

Reservoir No. 1 - REVISED POND SEPT 99

English

Pond Data

Pond storage is based on known contour areas

Stage / Storage Table

Stage ft	Elevation ft	Contour area sqft	Incr. Storage cuft	Total storage cuft
0.00	44.00	00	0	0
1.00	45.00	12	6	6
2.00	46.00	12	12	18
2.99	46.99	12	12	30
3.00	47.00	23,197	116	146
5.00	49.00	30,915	54,112	54,258
7.00	51.00	34,212	65,127	119,385
9.00	53.00	37,879	72,091	191,476
11.00	55.00	42,078	79,957	271,433
13.00	57.00	49,620	91,698	363,131

Culvert / Orifice Structures

Weir Structures

					Wen Struc	luies			
	[A]	[B]	[C]	[D]		[A]	[B]	[C]	[D]
Rise in	= 42.0	4.0	6.0	0.0	Crest Len ft	= 12.5	30.0	0.0	
Span in	= 42.0	4.0						0.0	0.0
•			18.0	0.0	Crest El. ft	= 53.00	55.40	0.00	0.00
No. Barrels	= 1	1	3	0	Weir Coeff.	= 3.00	3.00	0.00	0.00
Invert El. ft	= 44.14	48.00	50.00	0.00	Eqn. Exp.	= 1.50	1.50	0.00	0.00
Length ft	= 45.0	0.5	0.5	0.0	Multi-Stage	= Yes			
Slope %	= 0.42	0.00	0.00	0.00	muni-Stage	- 165	No	No	No
N-Value	= .013	.013	.013	.000					
Orif. Coeff.	= 0.60	0.60	0.60	0.00					
Multi-Stage	=								
		Yes	Yes	No	Tailwater Ele	vation = (0.00 ft		

Stage / Storage / Discharge Table

Note: All outflows have been analyzed under inlet and outlet control.

Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	Clv D cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Discharge cfs
0.00 1.00 2.00 2.99 3.00 5.00 7.00 9.00 11.00 13.00	0 6 18 30 146 54,258 119,385 191,476 271,433 363,131	44.00 45.00 46.00 46.99 47.00 49.00 51.00 53.00 55.00 57.00	0.00 4.76 13.96 22.69 48.87 81.69 104.71 123.51 139.81 154.39	0.00 0.00 0.00 0.00 0.00 0.38 0.71 0.92 0.74 0.00	0.00 0.00 0.00 0.00 0.00 0.00 9.38 17.97 18.96 0.00		0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0			0.00 0.00 0.00 0.00 0.00 0.38 10.09 18.89 125.76 336.54

Hyd. No. 20

2 YR POST DEV ROUTED

Hydrograph type = Reservoir Storm frequency = 2 yrs Inflow hyd. No. = 10

Max. Elevation = 52.14 ft

Peak discharge Time interval Reservoir name = 15.72 cfs

= 1 min

voir name = REVISED POND SE

Max. Storage

= 160,426 cuft

Storage Indication method used.

Total Volume = 146,083 cuft

Hydrograph Discharge Table

Time (hrs)	Inflow cfs	Elevation ft	Clv A cfs	Clv B	Clv C cfs	Clv D cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Outflow cfs
0.57	61.05	50.17	95.58	0.59	1.13		-				1.73
0.58	60.02	50.27	96.96	0.61	2.28						2.89
0.60	58.99	50.38	98.10	0.62	3.57						4.19
0.62	57.95	50.48	99.18	0.64	4.16						4.80
0.63	56.92	50.57	100.22		4.52						5.17
0.65	55.88	50.66	101.21		5.73						6.39
0.67	54.85	50.75	102.15		7.23						7.91
0.68	53.81	50.84	103.03		8.28						8.96
0.70 0.72	52.78	50.92	103.87		8.83						9.53
0.72	51.74 50.71	51.00	104.68		9.37						10.07
0.75	49.67	51.07	105.38		9.77						10.49
0.73	49.67 48.64	51.13 51.20	106.05		10.16						10.88
0.78	47.60	51.20 51.26	106.69	0.73	10.53						11.26
0.80	46.57	51.32	107.30 107.88	0.74	10.86			**			11.60
0.82	45.53	51.37	107.66		11.17						11.91
0.83	44.50	51.43	108.45		11.47						12.22
0.85	43.46	51.48	100.90		11.74 12.00						12.50
0.87	42.43	51.53	109.49		12.00						12.76
0.88	41.39	51.58	110.45		12.24						13.01
0.90	40.36	51.62	110.43		12.47						13.25
0.92	39.32	51.67	111.32		12.88						13.47
0.93	38.29	51.71	111.72		13.07						13.67 13.86
0.95	37.25	51.75	112.10		13.25						14.04
0.97	36.22	51.78	112.46	0.70	13.42						14.04
0.98	35.18	51.82	112.80	0.80	13.57			-			14.38
1.00	34.15	51.85	113.12	0.81	13.72						14.52
1.02	33.11	51.89	113.41		13.85						14.66
1.03	32.08	51.92	113.70		13.97						14.79
1.05	31.04	51.94	113.96	0.82	14.09						14.91
1.07	30.01	51.97	114.20		14.20						15.02
1.08	28.98	51.99	114.43		14.30						15.12
1.10	27.94	52.02	114.64		14.39						15.22
1.12	26.91	52.04	114.82		14.47						15.30
1.13	25.87	52.05	115.00	0.83	14.55						15.37
1.15	24.84	52.07	115.15	0.83	14.61						15.44
	10 × 10 mm		•								

Hydrograph Discharge Table

Time (hrs)	Inflow cfs	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	Civ D cfs	Wr A	Wr B cfs	Wr C cfs	Wr D	Outflow cfs
1.17	23.80	52.09	115.29	0.83	14.67						45.50
1.18	22.77	52.10	115.41	0.03 0.83	14.72			*****			15.50
1.20	21.73	52.11	115.51	0.03	14.72						15.56
1.22	20.70	52.12	115.60	0.03	14.77						15.60
1.23	19.66	52.13	115.67	0.04	14.83						15.64
1.25	18.63	52.13	115.72	0.04	14.86						15.67
1.27	17.59	52.14	115.76	0.04	14.87						15.69
1.28	16.56	52.14	115.78	0.04	14.88						15.71
1.30	15.52	52.14	115.78				******	******			15.72
1.32	14.49	52.14	115.77	0.04	14.88			****			15.72 <<
1.33	13.45	52.13	115.75	0.04	14.88			*****			15.72
1.35	12.42	52.13	115.70	0.04	14.87						15.70
1.37	11.38	52.12	115.64	0.04	14.85					~~	15.69
1.38	10.35	52.12	115.57	0.04	14.82						15.66
1.40	9.31	52.11	115.48	0.03	14.79						15.63
1.42	8.28	52.09	115.38		14.75						15.59
1.43	7.24	52.08	115.26		14.71						15.54
1.45	6.21	52.07	115.12	0.03	14.66			*****			15.49
1.47	5.17	52.05	114.97	0.03	14.60				*****		15.43
1.48	4.14	52.03	114.81	0.83 0.83	14.54						15.36
1.50	3.10	52.01	114.63	0.03	14.46						15.29
1.52	2.07	51.99	114.43	0.02	14.39						15.21
1.53	1.03	51.97	114.43	U.0Z	14.30						15.12
1.55	0.00	51.95	113.99	0.0Z	14.21						15.03
1.57	0.00	51.92	113.76	U.0Z	14.11						14.92
1.58	0.00	51.90	113.76	U.O I	14.00						14.82
1.60	0.00	51.87	113.52	0.81	13.90						14.71
1.62	0.00	51.85	113.29	U.O I	13.80				*****		14.60
1.63	0.00	51.82	112.84	U.01	13.69						14.50
1.65	0.00	51.80	112.64	0.80	13.59						14.39
1.67	0.00	51.78	112.38	0.00	13.49			,			14.29
1.68	0.00	51.75	112.36	0.00	13.38						14.18
1.70	0.00	51.73	111.93	0.80	13.28						14.07
1.72	0.00	51.73	111.93	U.79	13.17						13.97
1.73	0.00	51.68	111.49	0.79	13.07						13.86
1.75	0.00	51.66	111.49	J. 79	12.97					~~~~	13.75
1.77	0.00	51.64	111.27	J./9	12.86						13.65
1.78	0.00	51.62	111.05	J./8	12.76				*****		13.54
1.80	0.00	51.59	110.84	J./8	12.66						13.44
1.82	0.00	51.57	110.62	J./8	12.56						13.34
1.83	0.00	51.55	110.41 (J. 78	12.45						13.23
1.85	0.00	51.53	110.19 (). <i>[[</i>	12.34						13.12
1.87	0.00	51.53	109.98 ().// >.77	12.24						13.01
1.88	0.00	51.51 51.49	109.77 (J.//							12.90
1.90	0.00	51.49 51.46	109.56 (J. / /							12.80
1.92	0.00		109.35 (J. /6				*****			12.69
	0.00	51.44	109.15 ().76						*****	12.59
1.95	0.00	51.42	108.94 ().76							12.48
1.97	0.00	51.40 51.20	108.74 ().76	11.62				*****		12.38
1.31	0.00	51.38	108.54 ()./5	11.52						12.27

Hyd. No. 21

10 YR POST DEV ROUTED

Hydrograph type = Reservoir Storm frequency = 10 yrs Inflow hyd. No. = 11

Max. Elevation = 53.41 ft

Peak discharge Time interval = 30.20 cfs

Reservoir name

= 1 min = REVISED POND SE

Max. Storage = 207,955 cuft

Storage Indication method used.

Total Volume = 219,749 cuft

Hydrograph Discharge Table

Time (hrs)	Inflow cfs	Elevation ft	Clv A	Clv B	Clv C cfs	Clv D cfs	Wr A cfs	Wr B cfs	Wr C	Wr D	Outflow
		•	3.0	0.0	CIS	CIS	CIS	CIS	cfs	cfs	cfs
0.50	87.96	50.41	98.49	0.63	3.92						4.55
0.52	90.90 <<		100.17	0.65	4.50						5.16
0.53	89.43	50.72	101.81		6.69			-			7.36
0.55	87.96	50.87	103.36	0.69	8.49						9.18
0.57	86.50	51.01	104.83	0.71	9.45						10.16
0.58 0.60	85.03	51.14	106.10	0.72	10.19						10.91
0.62	83.57	51.26	107.32		10.87						11.61
0.62	82.10 80.63	51.38	108.49		11.49					******	12.25
0.65	79.17	51.49	109.62	0.77	12.06						12.83
0.67	77.70	51.60	110.71		12.60						13.38
0.68	76.24	51.71	111.74		13.08						13.87
0.70	70.24 74.77	51.81 51.92	112.75		13.55						14.35
0.72	73.30	52.01	113.70	0.81	13.98						14.79
0.72	73.30 71.84	52.01	114.63	0.82	14.39						15.21
0.75	70.37	52.11	115.51		14.77						15.60
0.77	68.91	52.20 52.29	116.37		15.14						15.98
0.78	67.44	52.29 52.38	117.18		15.47						16.33
0.80	65.97	52.46	117.97		15.80						16.66
0.82	64.51	52.54	118.72		16.10						16.97
0.83	63.04	52.62	119.44	0.88	16.39						17.27
0.85	61.57	52.69	120.14	0.89	16.67						17.55
0.87	60.11	52.76	120.80		16.92						17.82
0.88	58.64	52.83	121.43 122.03	0.90	17.17						18.07
0.90	57.18	52.90	122.03	0.91	17.40						18.31
0.92	55.71	52.96	123.16	0.91	17.62						18.54
0.93	54.24	53.02	123.16	0.92	17.83						18.75
0.95	52.78	53.07	124.10	0.93	18.02		0.30				19.25
0.97	51.31	53.12	124.51		18.19 18.34		1.15				20.27
0.98	49.85	53.16	124.88		18.48		1.94				21.21
1.00	48.38	53.20	125.23		18.60		2.67				22.08
1.02	46.91	53.24	125.53		18.72		3.34				22.88
1.03	45.45	53.27	125.81		18.82		4.43			*****	24.10
1.05	43.98	53.30	126.05	0.33 N QK	18.91		5.43				25.19
1.07	42.52	53.32	126.03	0.33 N 05	18.98		6.30				26.16
1.08	41.05	53.34	126.45	0.33 N 98	19.05		7.07 7.73				27.01
			.20.70	0.00	19.00		1.13				27.74

Hydrograph Discharge Table

Time (hrs)		Elevation ft	Clv A cfs	Civ B	Clv C	Clv D cfs	Wr A cfs	Wr B	Wr C	Wr D	Outflow cfs
1.10	39.58	53.36	400.04			0.0		0.0	CIS .	CIS	CIS
1.12	38.12	53.38	126.61	0.96	19.11		8.30			*****	28.36
1.13	36.65	53.39	126.74	0.96	19.16		8.77			*	28.88
1.15	35.19	53.40	126.84 126.92	0.96	19.19		9.15			*****	29.30
1.17	33.72	53.41	126.92	0.96	19.22		9.45			*****	29.63
1.18	32.25	53.41	120.96	0.90	19.24		9.71				29 .92
1.20	30.79	53.41 <<	127.02	0.90	19.26	~~~~	9.89				30.11
1.22	29.32	53.41	127.04	0.90	19.26		9.97	******			30.20 <<
1.23	27.86	53.41	127.04	0.90	19.26		9.96				30.19
1.25	26.39	53.41	126.98	0.90	19.26		9.87				30.09
1.27	24.92	53.40	126.93	0.90	19.24 19.23		9.70	-			29.90
1.28	23.46	53.39	126.86	0.90	19.23		9.46				29.65
1.30	21.99	53.38	126.78	0.30	19.20		9.22				29.38
1.32	20.52	53.37	126.68	0.30	19.17		8.92				29.05
1.33	19.06	53.36	126.57	0.00	19.13		8.57				28.66
1.35	17.59	53.34	126.45	0.00	19.05		8.17				28.22
1.37	16.13	53.33	126.31	0.95	19.00	77700	7.73 7.24				27.73
1.38	14.66	53.31	126.17		18.95		6.71				27.19
1.40	13.19	53.29	126.01	0.95	18.89		6.14				26.61
1.42	11.73	53.27	125.84	0.95	18.83		5.53				25.98
1.43	10.26	53.25	125.66	0.95	18.76		4.89				25.31
1.45	8.80	53.23	125.47	0.95	18.69		4.21				24.60
1.47	7.33	53.20	125.28		18.62		3.51				23.85
1.48	5.86	53.18	125.07	0.94	18.55		3.03				23.07 22.52
1.50	4.40	53.15	124.85	0.94	18.46		2.60				22.00
1.52	2.93	53.13	124.61	0.94	18.38		2.14				21.45
1.53	1.47	53.10	124.37	0.93	18.28		1.67				20.88
1.55 1.57	0.00	53.07	124.11	0.93	18.19		1.17				20.29
1.57	0.00	53.04	123.85	0.93	18.09		0.66				19.68
1.60	0.00 0.00	53.01	123.60	0.92	18.00		0.18				19.10
1.62	0.00	52.98	123.33	0.92	17.90						18.82
1.63	0.00	52.95	123.06	0.92	17.80						18.71
1.65	0.00	52.92 52.89	122.79	0.92	17.69						18.61
1.67	0.00	52.86	122.52	0.91	17.59						18.50
1.68	0.00	52.83	122.25	0.97	17.49						18.40
1.70	0.00	52.80	121.98	J.91	17.39						18.29
1.72	0.00	52.77	121.72 (J.90							18.19
1.73	0.00	52.74	121.45 (121.18 (J.90	17.18					· · ·	18.08
1.75	0.00	52.71	121.16 (17.08						17.97
1.77	0.00	52.68			16.97			·			17.87
1.78	0.00	52.65	120.66 (120.39 ().09 1.00	16.87						17.76
1.80	0.00	52.62	120.39 (0.09	16.77						17.66
1.82	0.00	52.59	119.87).0 9	16.67						17.55
1.83	0.00	52.56	119.67	7.00 1 88							17.45
1.85	0.00	52.53	119.35	7.00 1 88							17.34
	0.00	52.50	119.10		16.35						17.23
1.88	0.00	52.47	118.84			 .					17.13
1.90	0.00	52.44	118.59		16.15 16.05						17.02
			. 10.03	.07	10.05						16.92

Hyd. No. 22

25 YR POST DEV ROUTED

Hydrograph type = Reservoir Storm frequency = 25 yrs Inflow hyd. No. = 12 Max. Elevation = 53.75 ft = 53.75 ft

Peak discharge Time interval

= 45.65 cfs= 1 min

Reservoir name = REVISED POND SE Max. Storage

= 221,384 cuft

Storage Indication method used.

Total Volume = 260,175 cuft

Hydrograph Discharge Table

Time	Inflow	Elevation	01- 4	.		•					
(hrs)	cfs	ft	Clv A cfs	CIv B cfs	Clv C cfs	Clv D cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Outflow cfs
0.47	95.22	50.44	98.77	0.63	4.01						
0.48	98.62	50.61	100.59	0.66	4.73			*****		*****	4.65
0.50	102.02	50.78	102.41	0.68	7.65						5.39
0.52	105.42 <		104.22	0.00	9.06					~	8.33
0.53	103.72	51.11	105.87	0.70	10.06					~	9.76
0.55	102.02	51.27	107.40	0.72	10.00						10.78
0.57	100.32	51.42	108.88	0.74	11.69	~~~~					11.65
0.58	98.62	51.56	110.29	0.70	12.39						12.45
0.60	96.92	51.70	111.64	0.77	13.04						13.17
0.62	95.22	51.84	112.95	0.73	13.04						13.83
0.63	93.52	51.97	114.20	0.00							14.45
0.65	91.82	52.10	115.40	0.02	14.20						15.02
0.67	90.12	52.22	116.56	0.03	14.72						15.55
0.68	88.42	52.34	117.67	0.00	15.21						16.06
0.70	86.72	52.46	118.74	0.00	15.67						16.53
0.72	85.02	52.58	119.77	0.07 0.00	16.11						16.98
0.73	83.32	52.69	120.76	0.00 0.00	16.52						17.40
0.75	81.62	52.79	121.71	0.09	16.91						17.80
0.77	79.92	52.90	122.62	0.90	17.28						18.18
0.78	78.21	53.00	123.50	0.91	17.63						18.54
0.80	76.51	53.09	123.30	0.92	17.96						18.89
0.82	74.81	53.17	124.25	0.93	18.24		1.43				20.60
0.83	73.11	53.24	124.90	0.94	18.50		2.80				22.24
0.85	71.41	53.31	125.60	0.95	18.74		4.67				24.35
0.87	69.71	53.38	126.20 (0.95	18.96		6.82				26.73
0.88	68.01	53.44	126.74 (J.96	19.16		8.79				28.90
0.90	66.31	53.49	127.23 (J.96	19.33		10.89				31.19
0.92	64.61	53.53	127.67 (J.97	19.49	*****	12.97				33.43
0.93	62.91	53.58	128.06 ().9 <i>/</i>	19.63		14.82				35.42
0.95	61.21	53.61	128.41 ().98	19.76		16.45				37.19
0.97	59.51	53.64	128.71).98	19.86		17.97				38.82
0.98	57.81	53.67	128.97).98	19.95		19.44				40.38
1.00	56.11	53.69	129.19).99	20.03		20.68				41.70
1.02	54.41		129.37).99			21.72		*****		42.80
1.03	52.71	53.71	129.52	.99			22.57				43.70
1.05	51.01	53.72	129.64 0	.99			23.24				44.42
	31.07	53.73	129.73 0	.99	20.22		23.74				44.42 44.96
	1.		*								-4 .30

Hydrograph Discharge Table

Time	Inflow	Plan41									
(hrs	cfs	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	Clv D cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Outflow cfs
1.07	49.31	53.74	129.79	0 00	20.24		04.40				
1.08	47.61	53.75	129.83	0.33	20.24		24.10		*****		45.33
1.10	45.91	53.75	129.84	0.33	20.26		24.31				45.56
1.12	44.21	53.75	129.84	0.33	20.26		24.39 24.35				45.65 <<
1.13	42.51	53.74	129.81	0.33	20.25						45.60
1.15	40.81	53.74	129.76	0.33	20.23	*****	24.20 23.94				45.44
1.17	39.11	53.73	129.70	0.33	20.23		23.59				45.17
1.18	37.41	53.72	129.62	0.00	20.18		23.14				44.79
1.20	35.71	53.71	129.53	0.00	20.15		22.62				44.32
1.22	34.01	53.70	129.42	0.00	20.13		22.02				43.76
1.23	32.31	53.68	129.30	0.00	20.07		21.33				43.11
1.25	30.61	53.67	129.17	0.00	20.07		20.59				42.39
1.27	28.91	53.65	129.03	0.00	19.98		19.78				41.60
1.28	27.21	53.63	128.88	0.00	19.92		18.70				40.74
1.30	25.50	53.61	128.72	0.00	19.86		18.01				39.82
1.32	23.80	53.59	128.55	0.98	19.80		17.10				38.85
1.33	22.10	53.57	128.36	0.98	19.74		16.24				37.88
1.35	20.40	53.55	128.17	0.97	19.67		15.33				36.95
1.37	18.70	53.52	127.97	0.97	19.60		14.38				35.97
1.38	17.00	53.50	127.76	0.97	19.52		13.39				34.95
1.40	15.30	53.47	127.55	0.97	19.45		12.37				33.89 33.70
1.42	13.60	53.45	127.32	0.97	19.37		11.31				32.78
1.43	11.90	53.42	127.09	0.96	19.28		10.22				31.64
1.45	10.20	53.39	126.85	0.96	19.20		9.19				30.47 29.34
1.47	8.50	53.36	126.60	0.96	19.11		8.29				29.3 4 28.35
1.48	6.80	53.33	126.35	0.95	19.01		7.36				27.33
1.50	5.10	53.30	126.08	0.95	18.92		6.40				27.33 26.27
1.52	3.40	53.27	125.81	0.95	18.82		5.41				25.18
1.53	1.70	53.23	125.52	0.95	18.71		4.40				24.06
1.55	0.00	53.20	125.24	0.94	18.61		3.36				22.91
1.57	0.00	53.17	124.94	0.94	18.50		2.79				22.23
1.58	0.00	53.13	124.66	0.94	18.39		2.24				21.57
1.60	0.00	53.10	124.38	0.93	18.29		1.70				20.93
1.62	0.00	53.07	124.12	0.93	18.19		1.18				20.30
1.63 1.65	0.00	53.04	123.86	0.93	18.10	*****	0.68				19.70
1.67	0.00	53.01	. 123.61 (0.92	18.00		0.19				19.12
1.68	0.00	52.98	123.34 (0.92	17.90						18.82
1.70	0.00	52.95	123.07 (0.92	17.80						18.72
1.70	0.00	52.92	122.80 (0.92	17.70						18.61
- '	0.00	52.89	122.53 (0.91	17.59						18.51
1.73 1.75	0.00	52.86	122.26 (0.91	17.49				*****		18.40
1.77	0.00 0.00	52.83 50.00	121.99 (0.91	17.39						18.30
1.78		52.80	121.73 (0.90	17.29						18.19
1.80	0.00 0.00	52.77	121.46	0.90	17.18						18.08
1.82	0.00	52.74 52.74	121.19		17.08						17.98
1.83	0.00	52.71	120.93		16.98						17.87
1.85	0.00	52.68 53.65	120.66								17.76
1.87	0.00	52.65 53.63	120.40		16.77						17.66
1.07	J.00	52.62	120.14	0.89	16.67						17.56

Hyd. No. 23

100 YR POST DEV ROUTED

Hydrograph type = Reservoir Storm frequency = 100 yrs Inflow hyd. No. = 13 Max. Elevation = 54.15 ft

 $= 54.15 \, ft$

Peak discharge Time interval

Max. Storage

= 69.04 cfs

= 1 min Reservoir name

= REVISED POND SE = 237,630 cuft

Storage Indication method used.

Total Volume = 324,375 cuft

Hydrograph Discharge Table

Time	Inflow	Elevation	Ch. A	01. 5								
(hrs)	cfs	ft	CIV A cfs	Clv B cfs	Clv C cfs	Clv D cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Outflow cfs	
0.45	111.88	50.75	102.09	0.67	7.14						7.00	
0.47	116.03	50.94	104.11	0.70	8.99						7.82 9.69	
0.48	120.17	51.13	106.00	0.72	10.13							
0.50	124.31	51.3 1	107.85	0.74	11.15						10.85	
0.52	128.46 <		109.72		12.11						11.90	
0.53	126.39	51.69	111.56		13.00						12.88	
0.55	124.31	51.88	113.33	0.81	13.81						13.79	
0.57	122.24	52.06	115.02	0.83	14.56						14.62	
0.58	120.17	52.23	116.65	0.85	15.25						15.39	
0.60	118.10	52.40	118.21	0.86	15.90						16.10 16.76	
0.62	116.03	52.57	119.71		16.50						16.76	
0.63	113.95	52.73	121.15	0.90	17.06						17.38	
0.65	111.88	52.89	122.54	0.91	17.60						17.96	
0.67	109.81	53.04	123.84	0.93	18.09		0.64				18.51	
0.68	107.74	53.17	124.97	0.94	18.51		2.85				19.65 22.30	
0.70	105.67	53.29	126.03	0.95	18.90		6.22				26.07	
0.72	103.60	53.41	127.01	0.96	19.25		9.82					
0.73	101.52	53.51	127.89	0.97	19.57		14.01				30.04	
0.75	99.45	53.61	128.70	0.98	19.86		17.89				34.55	
0.77	97.38	53.70	129.41	0.99	20.11		21.95				38.72	
0.78	95.31	53.77	130.05	0.99	20.33		25.57				43.04	
0.80	93.24	53.84	130.61	1.00	20.53		29.05				46.90	
0.82	91.16	53.90	131.10	1.01	20.70		32.24				50.58	
0.83	89.09	53.95	131.53	1.01	20.85		35.02				53.95	
0.85	87.02	54.00		1.01	20.97		37.42				56.88	
0.87	84.95	54.04		1.02	21.08		39.66				59.41	
0.88	82.88	54.07		1.02	21.17		41.53				61.75	
0.90	80.80	54.09	132.67	1.02	21.24		43.06				63.72	
0.92	78.73	54.12		1.02	21.30		44.28				65.33	
0.93	76.66	54.13	132.97		21.34						66.61	
0.95	74.59	54.14	133.06		21.37		45.22				67.59	
0.97	72.52	54.15	133.12	1.03			45.90				68.30	
0.98	70.44	54.15	133.15	1.03			46.35				68.77	
1.00	68.37	54.15	133.16				46.58				69.01	
1.02	66.30	54.15			21.41		46.61				69.04 <<	
1.03	64.23	54.15	133.14				46.47				68.89	
			, 555, 10	1.03	21.38		46.16				68.57	

Rational Method Pond Routings 9 SF Orifice

Reservoir No. 4 - REVISED POND JAN 2000

English

Pond Data

Pond storage is based on known contour areas

Stage / Storage Table

Stage ft	Elevation ft	Contour area sqft	Incr. Storage cuft	Total storage cuft
0.00 1.00 2.00 2.99 3.00 5.00 7.00 9.00 11.00 13.00	44.00 45.00 46.00 46.99 47.00 49.00 51.00 53.00 55.00 57.00	00 12 12 12 12 23,197 30,915 34,212 37,879 42,078 49,620	0 6 12 12 116 54,112 65,127 72,091 79,957 91,698	0 6 18 30 146 54,258 119,385 191,476 271,433 363,131

Culvert / Orifice Structures

Weir Structures

[A] [B] [C] [D] Rise in = 42.0						TTCII Calac	iui co			
Span in = 42.0 4.0 36.0 0.0 Crest El. ft = 12.5 30.0 0.0 0.0 No. Barrels = 1 1 3 0 Weir Coeff. = 3.00 3.00 0.00 0.00 Invert El. ft = 44.14 48.00 50.00 0.00 Eqn. Exp. = 1.50 1.50 0.00 0.00 Length ft = 45.0 0.5 0.5 0.0 Multi-Stage = Yes No No No No Slope % = 0.42 0.00 0.00 0.00 Multi-Stage = Yes No No No Orif. Coeff. = 0.60 0.60 0.60 0.00 0.00 0.00		[A]	[B]	[C]	[D]		[A]	[B]	[C]	[D]
Span in = 42.0 4.0 36.0 0.0 Crest El. ft = 53.00 55.40 0.00 0.00 No. Barrels = 1 1 3 0 Weir Coeff. = 3.00 3.00 0.00 0.00 Invert El. ft = 44.14 48.00 50.00 0.00 Eqn. Exp. = 1.50 1.50 0.00 0.00 Length ft = 45.0 0.5 0.5 0.0 Multi-Stage = Yes No No No Slope % = 0.42 0.00 0.00 0.00 Multi-Stage = Yes No No No Orif. Coeff. = 0.60 0.60 0.60 0.00 0.00 0.00	Rise in	= 42.0	4.0	12.0	0.0	Crest Len ft	= 12.5	30.0	0.0	0.0
No. Barrels = 1 1 3 0 Weir Coeff. = 3.00 3.00 0.00 0.00 lnvert El. ft = 44.14 48.00 50.00 0.00 Eqn. Exp. = 1.50 1.50 0.00 0.00 Length ft = 45.0 0.5 0.5 0.0 Multi-Stage = Yes No No No No No No-Value = .013 .013 .013 .000 Orif. Coeff. = 0.60 0.60 0.60 0.00	Span in	= 42.0	4.0	36.0	0.0					
Invert El. ft = 44.14	No. Barrels	= 1	1 ,	3	0					
Length ft = 45.0 0.5 0.5 0.0 Multi-Stage = Yes No No No No Slope % = 0.42 0.00 0.00 0.00 N-Value = .013 .013 .013 .000 Orif. Coeff. = 0.60 0.60 0.60 0.00	Invert El. ft	= 44.14	48.00	50.00	0.00	Egn. Exp.	= 1.50			
Slope % = 0.42 0.00 0.00 0.00 N-Value = .013 .013 .000 Orif. Coeff. = 0.60 0.60 0.60 0.00	Length ft	= 45.0	0.5	0.5	0.0	•	= Yes			
Orif. Coeff. = 0.60	•	= 0.42	0.00	0.00	0.00					
Marie: Canada	N-Value	= .013	.013	.013	.000		•			
Multi-Stage = Yes Yes No Tailwater Elevation = 0.00 ft		= 0.60	0.60	0.60	0.00					
	Multi-Stage	=	Yes	Yes	No	Tailwater Ele	vation =	0.00 ft		

Stage / Storage / Discharge Table

Note: All outflows have been analyzed under inlet and outlet control.

Stage	Storage	Elevation ft	Clv A	Clv B	Clv C	Clv D	Wr A	Wr B	Wr C	Wr D	Discharge
ft	cuft		cfs	cfs	cfs	cfs	cfs	cfs	cfs	cfs	cfs
0.00 1.00 2.00 2.99 3.00 5.00 7.00 9.00 11.00 13.00	0 6 18 30 146 54,258 119,385 191,476 271,433 363,131	44.00 45.00 46.00 46.99 47.00 49.00 51.00 53.00 55.00 57.00	0.00 4.76 13.96 22.69 48.87 81.69 104.71 123.51 139.81 154.39	0.00 0.00 0.00 0.00 0.00 0.38 0.71 0.92 0.57 0.00	0.00 0.00 0.00 0.00 0.00 0.00 30.64 68.52 59.10 0.00		0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0			0.00 0.00 0.00 0.00 0.00 0.38 31.35 69.44 139.81 336.54

Hyd. No. 25

2 YR POST DEV ROUTED

Hydrograph type = Reservoir Storm frequency = 2 yrs Inflow hyd. No. = 10 Max. Elevation = 51.15 ft

Peak discharge Time interval Reservoir name

= 35.66 cfs = 1 min

r name = REVISED POND JA

Max. Storage = 124,894 cuft

Storage Indication method used.

Total Volume = 148,993 cuft

Hydrograph Discharge Table

Time (hrs)	Inflow cfs	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	Clv D cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Outflow cfs
0.58	60.02	50.27	96.91	0.61	4.44						
0.60	58.99	50.37	97.99	0.62	6.90						5.05
0.62	57.95	50.46	98.99	0.64	9.61	*****					7.52
0.63	56.92	50.54	99.90	0.65	12.35						10.24
0.65	55.88	50.62	100.73		14.98						12.99
0.67	54.85	50.69	101.47	0.67	17.69						15.63
0.68	53.81	50.75	102.15	0.68	20.15						18.36
0.70	52.78	50.81	102.76	0.68	22.43						20.83
0.72	51.74	50.86	103.29	0.69	24.68						23.11
0.73	50.71	50.91	103.77	0.00	26.68						25.37
0.75	49.67	50.95	104.18	0.70	28.44		*****				27.37
0.77	48.64	50.98	104.55		29.98						29.14
0.78	47.60	51.01	104.85		31.05						30.69
0.80	46.57	51.04	105.11	0.71	31.75						31.76
0.82	45.53	51.06	105.33	0.71	32.37						32.46
0.83	44.50	51.08	105.53	0.71	32.91						33.08
0.85	43.46	51.10	105.70		33.39			*			33.63
0.87	42.43	51.11	105.84	0.72	33.79				*****		34.10
0.88	41.39	51.12	105.97	0.72	34.13						34.51
0.90	40.36	51.13	106.07	0.72	34.40						34.85
0.92	39.32	51.14	106.14	0.72	34.62		-				35.13
0.93	38.29	51.15	106.20	0.72	34.78						35.34
0.95	37.25	51.15	106.24	0.73	34.88						35.50
0.97	36.22	51.15	106.26	0.73	34.93						35.60
0.98	35.18	51.15 <<	106.26	0.73	34.93						35.66
1.00	34.15	51.15	106.24	0.73	34.89						35.66 <<
1.02	33.11	51.15	106.21	0.73	34.80						35.61
1.03	32.08	51.14	106.16	0.70	34.66						35.52
1.05	31.04	51.14	106.10		34.49						35.39
1.07	30.01	51.13	106.02	0.72	34.27						35.21
1.08	28.98	51.12	105.93		34.02		*****				35.00
1.10	27.94	51.11	105.83		33.74						34.75
1.12	26.91	51.10	105.71	0.72	33.42						34.46
1.13	25.87	51.09	105.58	0.72	33.06						34.13
1.15	24.84	51.07	105.44	0.72 0.72	32.68						33.78
1.17	23.80	51.06	105.29	0.72	32.26						33.39
*	11.		.00.23		JZ.ZU						32.98

Hydrograph Discharge Table

Time	inflow	Elevation	Civ A	Civ B	Clv C	Clv D	Wr A	Wr B	Wr C	14/m D	0.49-
(hrs)	cfs	ft	cfs	cfs	cfs	cfs	cfs	cfs	cfs	Wr D cfs	Outflow cfs
1.18	22.77	51.04	105.13	0.71	31.82						32.53
1.20	21.73	51.03	104.96	0.71	31.35						32.06
1.22	20.70	51.01	104.78	0.71	30.86				****	*****	31.56
1.23	19.66	50.99	104.58	0.71	30.12						30.83
1.25	18.63	50.97	104.37	0.70	29.22						29.92
1.27	17.59	50.95	104.15	0.70	28.31						29.01
1.28	16.56	50.93	103.93	0.70	27.39						28.09
1.30 1.32	15.52	50.90	103.71	0.69	26.46			*****			27.15
1.32	14.49	50.88	103.49	0.69	25.52		*****				26.21
1.35	13.45	50.86	103.27	0.69	24.58						25.27
1.35	12.42	50.84	103.04	0.69	23.62						24.31
1.38	11.38 10.35	50.82	102.81	0.68	22.67						23.35
1.40	9.31	50.79	102.58	0.68	21.73						22.41
1.42	8.28	50.77	102.35	0.68	20.87		~				21.55
1.42	0.20 7.24	50.75	102.11	0.68	20.00			******			20.67
1.45	6.21	50.73	101.86	0.67	19.11						19.79
1.47	5.17	50.70	101.62		18.22						18.89
1.48	3.17 4.14	50.68	101.37	0.67	17.32						17.98
1.50	3.10	50.66 50.63	101.12	0.66	16.41						17.07
1.52	2.07	50.63	100.87	0.66	15.49	~~~~					16.15
1.53	1.03	50.58	100.61	0.66	14.56		****				15.22
1.55	0.00	50.56	100.35	0.65	13.72						14.37
1.57	0.00	50.53	100.08 99.82		12.92			*****			13.56
1.58	0.00	50.51		0.65 0.64	12.13						12.77
1.60	0.00	50.49		0.64	11.39		******				12.03
1.62	0.00	50.47		0.64	10.69	*****					11.33
1.63	0.00	50.45		0.63	10.03 9.41						10.67
1.65	0.00	50.43		0.63	8.83				~~~~	*****	10.05
1.67	0.00	50.42		0.63	8.28						9.46
1.68	0.00	50.40		0.63	7.76				*****	*****	8.91
1.70	0.00	50.39		0.63	7.78						8.39
1.72	0.00	50.37		0.62	7.02						8.01
1.73	0.00	50.36		0.62	6.68						7.64
1.75	0.00	50.34		0.62	6.35						7.30
1.77	0.00	50.33		0.62	6.03						6.97
1.78	0.00	50.32		0.62	5.73						6.65 6.35
1.80	0.00	50.31	97.35	0.61	5.45						6.06
1.82	0.00	50.30		0.61	5.17				*****		5.78
1.83	0.00	50.29		0.61	4.91						5.76 5.52
1.85	0.00	50.28	97.01	0.61	4.66						5.27
1.87	0.00	50.27	96.90	0.61	4.42						5.03
1.88	0.00	50.26	96.80	0.61	4.20					*****	4.80
1.90	0.00	50.25		0.61	3.98						4.59
1.92	0.00	50.24		0.61	3.77						4.38
1.93	0.00	50.23		0.60	3.58						4.18
1.95 1.97	0.00	50.23		0.60	3.39						3.99
1.97	0.00	50.22		0.60	3.21						3.81
1.30	0.00	50.21	96.29 (0.60	3.03	-					3.64
	and the second second										

Hyd. No. 26

10 YR POST DEV ROUTED

Hydrograph type = Reservoir Storm frequency = 10 yrs Inflow hyd. No. = 11 Max. Elevation = 51.88 ft

Peak discharge Time interval Reservoir name = 51.71 cfs = 1 min

= REVISED POND JA

Max. Storage

= 151,150 cuft

Storage Indication method used.

Total Volume = 223,397 cuft

Hydrograph Discharge Table

Time (hrs)	inflow cfs	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	Clv D cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Outflow cfs
0.50	87.96	50.40	98.40	0.63	7.84						0.47
0.52	90.90 <<	50.55	99.96	0.65	12.54				~		8.47
0.53	89.43	50.68	101.42		17.50						13.19
0.55	87.96	50.81	102.74	0.68	22.37						18.17
0.57	86.50	50.92	103.92	0.00	27.33				*****		23.06
0.58	85.03	51.02	104.95	0.70	31.32				*****		28.03
0.60	83.57	51.11	105.81	0.71	33.70						32.03
0.62	82.10	51.19	106.61	0.72	35.70 35.91						34.43
0.63	80.63	51.26	107.35	0.74	36.54				*****		36.64
0.65	79.17	51.33	108.05	0.75	36.87						37.28
0.67	77.70	51.40	108.73	0.76	37.19						37.62
0.68	76.24	51.46	109.34	0.76	39.78						37.94
0.70	74.77	51.52	109.89	0.77	42.11						40.55
0.72	73.30	51.57	110.38	0.77	44.18						42.88
0.73	71.84	51.61	110.82	0.78	45.73						44.95
0.75	70.37	51.65	111.20	0.78	46.52				*****		46.51
0.77	68.91	51.69	111.56	0.79	47.25						47.31
0.78	67.44	51.72	111.87	0.79	47.90						48.04
0.80	65.97	51.75	112.16	0.80	48.48						48.69
0.82	64.51	51.78	112.41	0.80	49.00						49.28
0.83	63.04	51.80	112.63	0.80	49.45						49.80
0.85	61.57	51.82	112.81	0.80	49.81						50.25
0.87	60.11	51.84	112.97	0.81	50.12						50.62
0.88	58.64	51.85	113.10	0.81	50.37						50.93
0.90	57.18	51.86	113.21	0.81	50.58	*****					51.18 51.20
0.92	55.71	51.87	113.29	0.81	50.73					*****	51.38 51.54
0.93	54.24	51.88	113.34	0.81	50.83						
0.95	52.78	51.88	113.37	0.81	50.89						51.64 51.70
0.97	51.31	51.88 <<	113.37	0.81	50.90	-					51.70
0.98	49.85	51.88	113.36	0.81	50.86						51.71 << 51.67
1.00	48.38	51.88	113.32	0.81	50.79						
1.02	46.91	51.87	113.25	0.81	50.67				*****		51.60
1.03	45.45	51.86	113.17		50.51				*****		51.48
1.05	43.98	51.85	113.07		50.31						51.32
1.07	42.52	51.84	112.95		50.07						51.12
1.08	41.05	51.82	112.81		49.80					*****	50.88
					.5.00						50.60

Hyd. No. 27

25 YR POST DEV ROUTED

Hydrograph type = Reservoir Storm frequency = 25 yrs Inflow hyd. No. = 12 Max. Elevation = 52.32 ft

Peak discharge = Time interval = Reservoir name =

= 59.30 cfs = 1 min

ame = REVISED POND JA

Max. Storage

= 166,972 cuft

Storage Indication method used.

Total Volume = 263,819 cuft

Hydrograph Discharge Table

Time (hrs)	inflow cfs	Elevation ft	Clv A cfs	Clv B	Clv C cfs	Clv D cfs	Wr A	Wr B cfs	Wr C	Wr D cfs	Outflow
0.47	95.22	50.43	00.00	0.00						0.0	0.3
0.48	98.62	50.43 50.58	98.66	0.63	8.64						9.27
0.50	102.02	50.74	100.35	0.65	13.72						14.38
0.52	105.42 <	< 50.74 < 50.89	101.97	0.67	19.51			*****			20.18
0.53	103.72	51.02	103.52	0.69	25.65						26.34
0.55	102.02	51.14	104.93	0.71	31.26						31.97
0.57	100.32	51.25	106.10		34.50						35.22
0.58	98.62	51.35	107.19		36.47						37.20
0.60	96.92	51.35 51.45	108.22		36.95						37.70
0.62	95.22	51.54	109.19	0.76	39.12						39.88
0.63	93.52	51.62	110.07	0.77	42.86						43.63
0.65	91.82	51.69	110.87		45.83	*****					46.61
0.67	90.12	51.76	111.59		47.32						48.11
0.68	88.42	51.83	112.27		48.71						49.51
0.70	86.72	51.89	112.89	0.80	49.96						50.76
0.72	85.02	51.89 51.95	113.46	0.81	51.06						51.87
0.73	83.32	52.00	113.98	0.82	52.08						52.90
0.75	81.62	52.00 52.04	114.47		53.02			*			53.85
0.77	79.92	52.0 4 52.09	114.91		53.83						54.66
0.78	78.21	52.09 52.13	115.30		54.57	*****					55.40
0.80	76.51	52.13 52.16	115.66		55.23						56.07
0.82	74.81	52.10	115.99		55.83						56.67
0.83	73.11	52.19	116.28	0.84	56.36						57.21
0.85	71.41	52.22 52.24	116.53	0.85	56.82						57.66
0.87	69.71		116.75		57.20						58.05
0.88	68.01	52.26	116.94		57.54						58.39
0.90	66.31	52.28	117.10		57.81						58.67
0.92	64.61	52.30	117.22	0.85	58.04						58.89
0.93		52.31	117.32	0.85	58.21			*****			59.07
0.95	62.91	52.31	117.39	0.86	58.34						59.19
0.95	61.21	52.32	117.44	0.86	58.41						59.27
0.97	59.51	52.32 <<	117.45	0.86	58.44						59.30 <<
	57.81	52.32	117.44	0.86	58.43				*****		59.28
1.00	56.11	52.32	117.41		58.37						59.22
1.02	54.41	52.31	117.35	0.86	58.26						59.11
1.03	52.71	52.30	117.27		58.11						58.97
1.05	51.01	52.29	117.16	0.85	57.92						58.78
	1.										50.10

Hyd. No. 28

100 YR POST DEV ROUTED

Hydrograph type = Reservoir Storm frequency = 100 yrs Inflow hyd. No. = 13 Max. Elevation = 53.06 ft

Peak discharge Time interval

= 71.39 cfs

= 1 min Reservoir name = REVISED POND JA

Max. Storage = 194,040 cuft

Storage Indication method used.

Total Volume = 327,942 cuft

Hydrograph Discharge Table

						·					
Time (hrs)	inflow cfs	Elevation ft	Clv A cfs	CIv B cfs	Clv C cfs	Clv D cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Outflow cfs
0.42	103.60	50.37	97.99	0.62	6.90			. •			7.50
0.43	107.74	50.54	99.90	0.65	12.36						7.53
0.45	111.88	50.71	101.73		18.64			******			13.00
0.47	116.03	50.88	103.49	0.69	25.52			*****			19.31
0.48	120.17	51.04	105.13	0.00	31.81						26.21
0.50	124.31	51.19	106.61	0.71	35.90				******		32.52
0.52	128.46 <	< 51.34	108.09	0.75	36.89						36.64
0.53	126.39	51.48	109.53		40.59						37.64
0.55	124.31	51.62	110.86		45.80						41.35
0.57	122.24	51.74	112.06	0.70	48.29					******	46.58
0.58	120.17	51.86	113.19	0.73	50.54						49.08
0.60	118.10	51.97	114.24	0.01	50.54 52.57					*****	51.35
0.62	116.03	52.08	115.21	0.02	54.40						53.39
0.63	113.95	52.18	116.12		56.08						55.23
0.65	111.88	52.27	116.97		57.59						56.92
0.67	109.81	52.35	117.76	0.00		*					58.44
0.68	107.74	52.43	118.49	0.00	58.98						59.84
0.70	105.67	52.51	119.16	0.07	60.25					*****	61.12
0.72	103.60	52.58	119.79	0.00	61.40						62.27
0.73	101.52	52.64	120.36	0.00	62.46						63.35
0.75	99.45	52.70	120.89		63.42						64.31
0.77	97.38	52.76	120.89		64.29						65.19
0.78	95.31	52.70 52.81	121.82	0.90	65.09		*****				65.99
0.80	93.24	52.85	121.02	0.90	65.81				*****		66.72
0.82	91.16	52.89	122.22	0.91	66.45						67.36
0.83	89.09	52.0 9 52.93	122.57	0.91	67.02				~		67.93
0.85	87.02	52.95 52.96	122.89	0.92	67.53						68.45
0.87	84.95	52.99 52.99	123.17	0.92	67.98		*****				68.90
0.88	82.88		123.42	0.92	68.38						69.30
0.90		53.01	123.62	0.92	68.68		0.21			*****	69.82
0.92	80.80	53.03	123.77	0.93	68.92		0.50				70.35
0.92	78.73	53.04	123.89	0.93	69.11		0.73				70.77
0.95	76.66	53.05	123.98	0.93	69.24	****	0.91		·		71.08
	74.59	53.06	124.03	0.93	69.33		1.02				71.28
0.97	72.52	53.06	124.06	0.93	69.38		1.07		*****		71.38
0.98	70.44	53.06 <<	124.06	0.93	69.38		1.08				71.39 <<
1.00	68.37	53.06	124.04	0.93	69.34		1.03		*****		71.30
	1.1	*									

5248 Olde Towne Road • Suite 1 • Williamsburg, Virginia 23188 (757) 253-0040 • Fax (757) 220-8994 • E-mail aes@aesva.com

September 29, 1999

Mr. Darryl E. Cook, Environmental Director James City County 101-E Mounts Bay Road Williamsburg, Virginia 23185

RE: VDOT/Williamsburg Plantation Combined Dry Pond

AES Project No. 7555-6

Dear Mr. Cook:

Please find enclosed three sets of revised 11"x17" plans and two sets of revised calculations for the above mentioned project. The revisions are in response to your letter dated August 25th and are discussed below.

- 1. The elevation of the water quality orifice has been raised to EL 48.0 in order to provide the required storage volume for the shallow marsh. The provided storage volume of 27,056 cubic feet is in excess of the required volume of 25,259 cubic feet. Calculations are provided for the incremental storage of the BMP and have been adjusted such that the storage volume of the micro-pool is not included. The micro-pool volume had previously yielded false storage capacities. Please see "Reservoir Report No. 2 Storage Pond Sept 99."
- 2. The first level of stormwater management releases (3 0.5'x1.5' slots) have been raised to EL 50.0, which provides a storage volume of 86,676 cubic feet. This volume exceeds the required 1" 24 hour detention requirement by 33,787 cubic feet. The excess storage is provided in response to the Environmental Division's acceptance of the lesser marsh surface area.

Additional revisions to the pond design include the principle spillway elevation (now EL 53.0), the emergency spillway elevation (now EL 55.4), and the top of dam elevation (now 57.4). These changes are the result of the raised water quality orifice, and are noted on the enclosed plan sheets.

Should you have any questions regarding the plans or the pond design calculations, please contact me at 253-0040. I would be happy to discuss your concerns.

works Plant will make modif. to pand when they durlop in its watershed.

Sincerely, AES Consulting Engineers

tro Puells

Deirdre P. Wells, P.E. Project Engineer

Enclosures

DEVELOPMENT MANAGEMENT

101-E Mounts Bay Road, P.O. Box 8784, Williamsburg, Virginia 23187-8784 (757) 253-6671 Fax: (757) 253-6850 E-mail: devtman@james-city.va.us

CODE COMPLIANCE (757) 253-6626 codecomp@james-city.va.us

Environmental Division (757) 253-6670 environ@james-city.va.us

Planning (757) 253-6685 planning@james-city.va.us COUNTY ENGINEER (757) 253-6678 INTEGRATED PEST MANAGEMENT (757) 253-2620

December 30, 1999

Ms. Deirdre Wells AES Consulting Engineers 5248 Olde Towne Road Suite 1 Williamsburg, VA 23188

RE: Williamsburg Plantation/VDOT Combined Dry Pond

Dear Ms. Wells:

You submitted design information to document the modification of a dry pond called Facility G, built to serve a portion of the Route 199, to enable it to serve a portion of the Williamsburg Plantation project. The modifications involved converting the dry basin to a shallow marsh detention basin to meet the County's water quality requirements for a 9-point BMP under the Chesapeake Bay Preservation Ordinance.

The modifications as contained in the final set of calculations dated September 29, 1999, with accompanying drawings dated 2/22/99 with a final revision date of 9/28/99 are approved. At the appropriate time, these proposed modifications will need to be incorporated into site plan drawings for the first area of Williamsburg Plantation that will drain into the Facility G.

If you have any questions or there is further action needed on my part, please contact me at 253-6673.

Sincerely,

Darryl E. Cook, P.E.

Darryl Elook

Environmental Director

STORMWATER MANAGEMENT/ BMP CALCULATIONS FOR DRY POND

WILLIAMSBURG PLANTATION/ VDOT RT 199

AES PROJECT #7555-6

Prepared By:
AES Consulting Engineers
5248 Olde Towne Road, Suite 1
Williamsburg, Virginia 23188
September 29, 1999

5248 Olde Towne Road, Suite 1 Williamsburg, Virginia 23188 (757) 253-0040 Fax: (757) 220-8994 E-Mail: aes@aesva.com

VIXI/
PROJECT WILLIAMS BURG PLANTATION
PROJECT NO
SUBJECT DRY POND W MARSH DESIGN
SHEET NO OF
CALCULATED BY DPW DATE 9/27/99

	CALCULATED BY DPW	DATE 4/2/199
DETERMINE DRAINAGE AREA SERVE	20 19/1 YOUD	
WIR AREA = 21.09 AC + (FROM	"OVERALL STORMWATER	MALINGEINENT
	PLAN" DATED MIGHE	**************************************
199 AREA = 27.30 AC + (FEOM)	"DEAINAGE STUDY FOR CON	IBINED SWM
	ILITIES WI WIR DEVELOPIV	
	FED 5194 BY MMM)	
TOTAL = 48.39 AC		
ASSUME THAT 1.432 AC 15 INCL	UDED IN BOTH DRAINAGE D	PERAS.
THIS IS THE AREA OF VIOT COND		
ROF W.P.		
	122 11 060 1	
.'. TOTAL DA = 48.39-	1474=46700 AC	
	USE 47 AL -	
DETERMINE % IMPERVIOUS AREA (POS	T-DeV)	
W.P. AREA = 8.715 AC± (FROM RECE		
-0.22 AC (AREA OF)		
8,53 AC CONDE	MNATION \Rightarrow 6(56x28').	
199 AREA = 5.21 AC (FROM "EXH		
+ . OLAC (ONLY 25.6	03 AC OF 27,30 AC 15 AC	COUNTED
	HT. E, I'. ASSUME 50% OF	
	1.67 AC IS IMPERVIOUS)	
1012C 14.58 AC		
% IMP = 14.58 (100) = 31.0%		
47.8		
	31.0% IMP <	
	THE POST OF THE PO	

5248 Olde Towne Road, Suite 1 Williamsburg, Virginia 23188 (757) 253-0040 Fax: (757) 220-8994 E-Mail: aes@aesva.com

PROJECT VI	DT/W.	P		
PROJECT NO	7555	-6		•
SUBJECT D	Y POUD	WIMA	est	
SHEET NO.	2	_ OF		
CALCULATED BY	Y DAW		DATE 9/27/99)

CALCULATED BY <u>DAW</u>	DATE 112117
DETERMINE BOD VOLUME OF POND FOR WATER QUALITY	
DESIGN TURE 4: DETAIN 1" FOR 24 HOURS	
POD += 1"(47AC)(1/12") (43560 5FAC) (0.310)	
= 52889 CF	
THIS Y ACHIEVED @ EL = 48,9	
-> JCC ENVIRONMENTAL DEPT REQUESTS DEWATERING ORIFICE	
PE PAISED TO THE ELEV POD TO PROVIDE APPROPRIATE VOLUME, ADDITIONALLY, STORAGE MUST BE PROVIDED	MARSH
FOR THE VOLUME DISPLACED BY THE MARSH DEPTH	
** VOLUME @ OL 48.0 = 27,056 CF (SEE PAGE	53
FOUNTE CO EC TITO = O CF FOR MAR	4
YOUME DISPLACED = 27,056 CF SIZING (
PEVISED ROD YOLUME = 52,889 + 27056 CF	
= 79,945 CF	
** YOL AVAILABLE @ EXIST. TOP OF DI, EL=49,3 = 63,881	
** You of 79,945 of actieved at EL = 49.8 <	
USE SCOTS @ EL 50 W/ STORAGE = 8606 THIS PROVIDES EXCESS STORAGE OF	7166
86676-52889=33787:1.0K	
DETERMINE ORIFICE SIZE FOR 24 HOUR RELEASE	
OCIFICE EL = 48,0.". You to BE RELEASED = 860676 -27056 CF	
Qe = 59.620 cF = 0.69 cFs $= 0.7020 cF$	
** PEFER TO RESERVOIR REPORT FOR NO. 2 STORAGE PO	ND (PG8)

5248 Olde Towne Road, Suite 1 Williamsburg, Virginia 23188 (757) 253-0040 Fax: (757) 220-8994 E-Mail: aes@aesva.com

PROJECT VDOT/W.P.
PROJECT VWIP
PROJECT NO. <u>7555-6</u>
SUBJECT DRY POND W/ MABH
SHEET NO OF
CALCULATED BY DPIAS DATE 9/27/99

L-Iviali. aes@aesva.com	SHEET NO	OF	11
	CALCULATED BY_	DPW	DATE <u>9/27/9</u>
Ge=CAJZgsh			
C=0.6			
Q=32.2 H/32			
$\Delta h = 50 - 48 = 1.0$			
0.69 crs = 0.6 A /2(32,2×1.0)			
A=0.14 SF = 91/12			
r = 0.21' = 2.5''			
	DIAMETER O		
$0 = 3 \rightarrow 0 = 4$	DIAME IER O	AIF/CE	
VERIFY EMPRIENCY SPILLWAY	1 10 1		
MAX BL FOR 100 ME STORM (ROUTED) = 8 Quo @ EL 56.42 = 243 CFS = (588 BBS)	CO.TO (SEE	SUMMARY RE	PORT, YG7)
TEN 2'DEEP; 1:155; 5:5% SLOP	E TONEZAN	AL SECTION	ND, K79-11)
USE VOOT FIG 2.8.38	e) ranceola	ac secmon	
depth < 1.0' : . OK			
MARSH SIZING			
MIN ROD YOU'ME = (RM)(RV)/1	(DA) ACT		
RM= 0.45" (* MEAN STORM)			
Ry=0.05+0.009(% IMP)			
DA = 47AC			
90 IMP = 31.0 (FROM PAGE 1)			
	PONK	= 25,259 c	
	HODA:	<u> </u>	
	72-0.45	Long	
	PROVIDED-	F= 27,056	

5248 Olde Towne Road, Suite 1 Williamsburg, Virginia 23188 (757) 253-0040 Fax: (757) 220-8994 E-Mail: aes@aesva.com

PROJECT VDOT W.P.	
PROJECT NO. 7555-6	
SUBJECT DRY POND W/ 1	MARSH
SHEET NO4 OF	11
CALCULATED BY DPW	DATE 9/27/99

	CALCULATED BY_	DPW	DATE 9/27/99
MIN. ROD SURFACE AREA = 2% (Z	A)		
DA = 47 AC AREA POD = 40,946 SF			
APEA AVAILABLE AT EL 48	2011/6/		
* JCC LETTER DATED 8/23/9			
AREA WI GREATER STORA	GE PROVISION	N' OK	

5248 Olde Towne Road, Suite 1 Williamsburg, Virginia 23188 (757) 253-0040 Fax: (757) 220-8994

PROJECT WILLIAMSBURG PLANTATION
PROJECT NO. <u>7555-6</u>
SUBJECT DRY POND W MARSH DESIGN
SHEET NO. X 5 OF X
CALCULATED BY TOPW DATE 2 4 99

	ONLOGENTED BT_		DATE 2/4/99
			The second secon
FLOW ATTENUATION CALCS	IIII épé		
	11179	METHOD +	
PREDEVELOPMENT:		MORE ACLURA	TE THAN
- KELEVEUTINGNI -			R49ACDA
WIP AREA = 21.09 AC			
WOOLED/GRASSED	> > cN=73		
199 AREA = 27.30 AC			
AVG. GRASSED	> cv=7/		
(PER MMM CALCS)			
the state of the s	~ 	111111111111111111111111111111111111111	
CN = (21.09)(13) + (27.30 - 1.45)	3)(71) = 1/10	→ <u>W=12</u>	PRE-DEV
POSTDEVELOPMENT:			
┎╶┆╼┞╼┋╼┋╼╊═╇═┋ ╾ ╏╸╏╸╏ ╾ ╏ ╼╏ ╸			
W.P. AREA			
	5 AC W=	= 98	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
	5 AC CV=	74	
W = (6.05)(98) + (3.79)(98)	3) + (11.25)(74	9 = 85.2	
	J+ Uneur	2 = 85.2	
21.09			
199 AREA			
$POADS \longrightarrow (0.05 AC)$	cw=	98	
OPEV -> 19.82 AC	- CW=	- 74	
	3-1.43-6.05		
CN = (6.05)(98) + (19.82)(
25.87		X NOTE 37	MALLE HATER
		APE NOT	OTALDA#S T=47 byc ING; SEE PAGE/
CV = (21.09)(85.2) + (25.2)	5.89)(19.6)		NG; SEE HAGE I
- HI WIT LENOY JUDGES INC.	ב עשירויונויסיג	= 82	
╒╃┞╏╋┡╬╋┢┨╠╃╎ ╫╇ ┋╏╃╻		=>rN=82	POST-DEV
TAIL DEVISION AND ALCOHOLEGEE			
(NO REVISIONS 9/99) SEE P	47/11 FOR	DISCHARGE	5
			

5248 Olde Towne Road, Suite 1 Williamsburg, Virginia 23188 (757) 253-0040 Fax: (757) 220-8994

PROJECTWIL	LIAMSE	UPG I	741	TATION
PROJECT NO. <u>7555</u> -	6		_	
SUBJECT DEV POND	W/MAR	SH I	ES1	GN
SHEET NO. X (OF_	X	11	
CALCULATED BY DP	V.	DA ⁻	TEZ	122/99

CALC	CULATED BY DPW	DATE 2/22/99
INVET PIPE FOR W.P. AREA		
A DROP-INLET (DI-7 TYPE) AN THE CONVEYANCE OF DEAINAGE. I	FROM W.P. THE INLE	
HAS BEEN LOCATED SUCH THAT TO SYSTEM OF INDIAN FIELDS WA		
THE BARREL HAS BEEN SIZED FOR W.R. AREA AS A CONSERVATIVE M		UTING
10 TAC W.P. DA = 21.09 AC (5)		
GIO POST FOR THIS AREA = 88	##)	
ASSUME: FULL FLOWING PIPE S=0.015 FT/FT	(NEGL. FRICTION LOSS)	
$Q = 0.463 d^{8/3} 5^{1/2}$ $88.4 = 0.463 d^{8/3} (0.015)^{1/2}$ 0.013	(MANNING/CHEEY FORMULAS	FEFAL FLOW
d = 3.09' -: use 36" Ø		
	$- w/36" \phi \rightarrow 4'-8" c$ STANDARD (04.22)	or 4.67
INV= 48.80 4.7' > 4.67'	OK	
(No Revisions 9199)		

Hydrograph Summary Report

Page 1 7

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Volume (cuft)	Return period (yrs)	Inflow hyd(s)	Maximum elevation (ft)	Maximum storage (cuft)	Hydrograph description
1	SCS Runoff	51.8	1	733	225,039	2				2 YEAR PRE-DEV
2	SCS Runoff	116.2	1	733	482,602	10		******		10 YEAR PRE-DEV
3	SCS Runoff	151.1	1	732	624,143	25				25 YEAR PRE-DEV
4	SCS Runoff	216.2	1	732	891,574	100				100 YEAR PRE-DEV
5	SCS Runoff	98.1	5	725	346,869	2				2 YEAR POST-DEV
ĵ	SCS Runoff	183.5	5	725	648,925	10				10 YEAR POST-DE\
7	SCS Runoff	227.0	5	725	806,819	25				25 YEAR POST-DEV
3	SCS Runoff	305.6	5	725	1,097,217	100		******		100 YEAR POST DE
9	Reservoir	18.5	5	755	341,056	2	5	52.89	187,468	2 YR POST DEV RO
10	Reservoir	114.3	5	740	643,103	10	6	54.81	263,700	10 YR POST DEV R
11	Reservoir	148.9	5	735	800,994	25	7.	55.53	295,605	25 YR POST DEV RO
12	Reservoir	242.6	5	735	1,091,386	100	8	56.42	336,376	100 YR POST DEV F
			FLO		ATTE	NUA	TION			
		STOR				PPE			(ROUTE	
		STOR							(ROUTE	
		STOR (YR	M O			PPE			(ROUTE (CFS) 18.5	
		0	2M ()			PRE (CFS) 51.8		Post	18.5	
		2	2M (2)			PRE (CFS) 51.8 116.2		Post	18.5 114.3	
		2 10 25	MS CS			PRE (CFS) 51.8 116.2 151.1		Post	18.5 114.3 148.9	
		2	MS CS			PRE (CFS) 51.8 116.2		Post	18.5 114.3	
		2 10 25	MS CS			PRE (CFS) 51.8 116.2 151.1		Post	18.5 114.3 148.9	
		2 10 25	MS CS			PRE (CFS) 51.8 116.2 151.1		Post	18.5 114.3 148.9	
		2 10 25	MS CS			PRE (CFS) 51.8 116.2 151.1		Post	18.5 114.3 148.9	

Reservoir No. 2 - STORAGE POND SEPT 99

Pond Data

Pond storage is based on known contour areas

Stage / Storage Table

Stage ft	Elevation ft	Contour area sqft	Incr. Storage cuft	Total storage cuft
0.00	47.00	23,197	0	0
2.00	49.00	30,915	54,112	54,112
4.00	51.00	34,212	65,127	119,239
6.00	53.00	37,879	72,091	191,330
8.00	55.00	42,078	79,957	271,287
10.00	57.00	49,620	91,698	362,985

Culvert / C	Prifice Stu	ucture	5		Weir Structures				
	[A]	[B]	[C]	[D]	[A] [B] [C] [E)]			
Rise in	= 0.0	0.0	0.0	0.0	Crest Len ft = 0.0 0.0 0.0 0.0	0			
Span in	= 0.0	0.0	0.0	0.0	Crest El. ft = 0.00 0.00 0.00 0.0				
No. Barrels	= 0	0	0	0	Weir Coeff. = 0.00 0.00 0.00 0.0	00			
Invert El. ft	= 0.00	0.00	0.00	0.00	Eqn. Exp. = 0.00 0.00 0.00 0.0				
Length ft	= 0.0	0.0	0.0	0.0	Multi-Stage = No No No No				
Slope %	= 0.00	0.00	0.00	0.00					
N-Value	= .000	.000	.000	.000					
Orif. Coeff.	= 0.00	0.00	0.00	0.00					
Multi-Stage	=	No	No	No	Tailwater Elevation = 0.00 ft				

Stage / Storage / Discharge Table

Note: All outflows have been analyzed under inlet and outlet control

Stage ft	Storage cuft	Elevation ft	CIv A cfs	Clv B cfs	Clv C cfs	Clv D cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Discharge cfs
0.00	0	47.00									0.00
2.00	54,112	49.00									0.00
4.00	119,239	51.00									0.00
6.00	191,330	53.00									0.00
8.00	271,287	55.00					 ·				0.00
10.00	362,985	57.00		-							0.00

9/1

Reservoir No. 1 - REVISED POND SEPT 99

Pond Data

Pond storage is based on known contour areas

Stage / Storage Table

Stage ft	Elevation ft	Contour area sqft	Incr. Storage cuft	Total storage cuft
0.00	44.00	00	0	0
1.00	45.00	12	6	6
2.00	46.00	12	12	18
2.99	46.99	12	12	30
3.00	47.00	23,197	116	146
5.00	49.00	30,915	54,112	54,258
7.00	51.00	34,212	65,127	119,385
9.00	53.00	37,879	72,091	191,476
11.00	55.00	42,078	79,957	271,433
13.00	57.00	49,620	91,698	363,131

Culvert / Orifice Structures

Weir Structures

				•			
[A]	[B]	[C]	[D]	[A]	[B]	[C]	[D]
= 42.0	4.0	6.0	0.0	Crest Len ft = 12.5	30.0	0.0	0.0
= 42.0	4.0	18.0	0.0	Crest El. ft = 53.0	0 55.40	0.00	0.00
= 1	1	3	0	Weir Coeff. = 3.00	3.00	0.00	0.00
= 44.14	48.00	50.00	0.00	Eqn. Exp. = 1.50	1.50	0.00	0.00
= 45.0	0.5	0.5	0.0	Multi-Stage = Yes	No	No	No
= 0.42	0.00	0.00	0.00				
= .013	.013	.013	.000				
= 0.60	0.60	0.60	0.00				
2	Yes	Yes	No	Tailwater Elevation	= 0.00 ft		
	= 42.0 = 42.0 = 1 = 44.14 = 45.0 = 0.42 = .013 = 0.60	= 42.0	= 42.0	= 42.0	= 42.0	= 42.0	= 42.0

Stage / Storage / Discharge Table

Note: All outflows have been analyzed under inlet and outlet control.

Stage Stora	age Elevation	Clv A	Clv B	Clv C	Clv D	Wr A	Wr B	Wr C	Wr D	Discharge
	ft	cfs	cfs	cfs	cfs	cfs	cfs	cfs	cfs	cfs
0.00 0 0.10 1 0.20 1 0.30 2 0.40 2 0.50 3 0.60 4 0.70 4 0.80 5 0.90 5 1.00 6	44.00 44.10 44.20 44.30 44.40 44.50 44.60 44.70 44.80 44.90 45.00	0.00 0.00 0.03 0.22 0.68 1.12 1.63 2.25 2.98 3.82 4.76	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	 	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0			0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0

Continues on next page...

Stage ft	Storage cuft	Elevation ft	CIV A cfs	Clv B cfs	Clv C cfs	Clv D cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Discharge cfs
1.10 1.20	7 8	45.10 45.20	5.80 6.35	0.00 0.00	0.00 0.00		0.00 0.00	0.00		-	0.00 0.00
1.30	10	45.30	7.51	0.00	0.00		0.00	0.00			0.00
1.40	11	45.40	8.12	0.00	0.00		0.00	0.00			0.00
1.50 1.60	12 13	45.50 45.60	9.37	0.00	0.00		0.00	0.00			0.00
1.70	13	45.60 45.70	10.01 11.31	0.00 0.00	0.00 0.00		0.00 0.00	0.00			0.00
1.80	16	45.80	11.98	0.00	0.00		0.00	0.00 0.00			0.00 0.00
1.90	17	45.90	13.30	0.00	0.00		0.00	0.00			0.00
2.00	18	46.00	13.96	0.00	0.00		0.00	0.00			0.00
2.10 2.20	19	46.10	15.27	0.00	0.00		0.00	0.00			0.00
2.20	20 22	46.20 46.30	15.91 16.54	0.00 0.00	0.00 0.00		0.00	0.00			0.00
2.40	23	46.40	17.76	0.00	0.00		0.00 0.00	0.00 0.00			0.00
2.49	24	46.49	18.35	0.00	0.00		0.00	0.00			0.00 0.00
2.59	25	46.59	19.48	0.00	0.00		0.00	0.00			0.00
2.69	26	46.69	20.52	0.00	0.00		0.00	0.00			0.00
2.79 2.89	28 29	46.79 46.89	21.00	0.00	0.00		0.00	0.00			0.00
2.99	30	46.99	21.90 22.69	0.00 0.00	0.00 0.00		0.00 0.00	0.00 0.00			0.00
2.99	42	46.99	48.79	0.00	0.00		0.00	0.00			0.00 0.00
2.99	53	46.99	48.80	0.00	0.00		0.00	0.00			0.00
2.99	65	46.99	48.81	0.00	0.00		0.00	0.00			0.00
2.99 2.99	76 88	46.99 46.99	48.82	0.00	0.00		0.00	0.00			0.00
3.00	100	40.99 47.00	48.83 48.84	0.00 0.00	0.00 0.00		0.00 0.00	0.00 0.00			0.00
3.00	111	47.00	48.85	0.00	0.00		0.00	0.00			0.00 0.00
3.00	123	47.00	48.85	0.00	0.00		0.00	0.00			0.00
3.00	134	47.00	48.86	0.00	0.00		0.00	0.00			0.00
3.00 3.20	146 5,557	47.00 47.20	48.87 53.42	0.00 0.00	0.00 0.00		0.00	0.00			0.00
3.40	10,968	47.40	57.56	0.00	0.00		0.00 0.00	0.00 0.00			0.00 0.00
3.60	16,380	47.60	60.83	0.00	0.00		0.00	0.00			0.00
3.80	21,791	47.80	64.02	0.00	0.00		0.00	0.00			0.00
4.00 4.20	27,202	48.00	67.28	0.00	0.00		0.00	0.00		***	0.00
4.40	32,613 38,024	48.20 48.40	70.40 73.38	0.09 0.14	0.00 0.00		0.00	0.00			0.09
4.60	43,436	48.60	76.25	0.14	0.00		0.00 0.00	0.00 0.00			0.14 0.28
4.80	48,847	48.80	79.02	0.33	0.00		0.00	0.00			0.28
5.00	54,258	49.00	81.69	0.38	0.00		0.00	0.00			0.38
5.20 5.40	60,771 67,283	49.20	84.27	0.43	0.00		0.00	0.00			0.43
5. 4 0 5.60	73,796	49.40 49.60	86.78 89.22	0.47 0.50	0.00		0.00	0.00			0.47
5.80	80,309	49.80	91.59	0.54	0.00		0.00 0.00	0.00 0.00			0.50 0.54
6.00	86,822	50.00	92.82	0.57	0.00		0.00	0.00			0.57
6.20	93,334	50.20	96.16	0.60	1.37		0.00	0.00			1.97
6.40 6.60	99,847	50.40	98.37	0.63	3.88		0.00	0.00			4.50
6.80	106,360 112,872	50.60 50.80	100.53 102.64	0.66 0.68	4.63 8.01		0.00	0.00			5.28
7.00	119,385	51.00	102.04	0.00	9.38		0.00 0.00	0.00 0.00			8.70 10.09
7.20	126,594	51.20	106.74	0.73	10.56		0.00	0.00			11.29
7.40	133,803	51.40	108.73	0.76	11.62		0.00	0.00			12.37
7.60	141,012	51.60	110.68	0.78	12.59		0.00	0.00			13.37

Continues on next page...

Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	Clv D cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Discharge cfs
7.80	148,221	51.80	112.61	0.80	13.49		0.00	0.00			14.29
8.00	155,430	52.00	114.50	0.82	14.33		0.00	0.00			15.15
8.20	162,640	52.20	116.35	0.84	15.13		0.00	0.00			15.97
8.40	169,849	52.40	118.18	0.86	15.89	***	0.00	0.00			16.75
8.60	177,058	52.60	119.99	0.88	16.61		0.00	0.00			17.49
8.80	184,267	52.80	121.76	0.90	17.30		0.00	0.00			18.20
9.00	191,476	53.00	123.51	0.92	17.97		0.00	0.00			18.89
9.20	199,472	53.20	125.23	0.94	18.61		3.35	0.00			22.90
9.40	207,467	53.40	126.94	0.96	19.23		9.49	0.00			29.68
9.60	215,463	53.60	128.62	0.98	19.83		17.43	0.00			38.24
9.80	223,459	53.80	130.27	1.00	20.41		26.83	0.00			48.24
10.00	231,455	54.00	131.91	1.01	20.98		37.50	0.00			59.49
10.20	239,450	54.20	133.53	1.03	21.53		49.30	0.00			71.86
10.40	247,446	54.40	135.12	1.04	22.07		62.12	0.00			85.23
10.60	255,442	54.60	136.70	0.97	22.60		75.90	0.00			99.46
10.80	263,437	54.80	138.26	0.87	22.46		90.56	0.00			113.89
11.00	271,433	55.00	139.81	0.74	18.96		106.07	0.00			125.76
11.20	280,603	55.20	141.33	0.58	15.08		122.37	0.00			138.03
11.40	289,773	55.40	142.84	0.33	8.59		139.43	0.00			142.84
11.60	298,942	55.60	144.34	0.00	0.00		157.21	8.05			152.39
11.80	308,112	55.80	145.82	0.00	0.00		175.70	22.77			168.58
12.00	317,282	56.00	147.28	0.00	0.00		194.86	41.83			189.11
12.20	326,452	56.20	148.73	0.00	0.00		214.66				213.13
12.40	335,622	56.40	150.16	0.00	0.00		235.10				240.17
12.60	344,792	56.60	151.59	0.00	0.00		256.15	118.31			269.90
12.80	353,961	56.80	153.00	0.00	0.00		277.78	149.09		~	302.08
13.00	363,131	57.00	154.39	0.00	0.00		300.00	182.15			336.54

HYDROGRAPH REPORTS

Hyd. No. 1

2 YEAR PRE-DEV

Hydrograph type = SCS Runoff Peak discharge = 51.79 cfsStorm frequency = 2 yrs Drainage area = 47.00 ac = 1 min Time interval Drainage area Basin Slope Curve number = 72 = 3.5 %= 1600 ftHydraulic length Tc method Time of conc. (Tc) = 31.3 min = LAG Total precip. = 3.80 inDistribution = Type II = 24 hrs Storm duration Shape factor = 484

Total Volume = 225,039 cuft

Hydrograph Discharge Table

Time (hrs	Outflow cfs)	Time (hrs	Outflow cfs)
11.78 11.82 11.85 11.85 11.95 11.95 12.05 12.15 12.25 12.35 12.35 12.35 12.35 12.45 12.45 12.55 12.65 12.75 12.75 12.78 12.78 12.82	5.34 6.96 9.17 12.16 16.13 20.87 26.03 31.19 36.16 40.82 44.99 48.43 50.82 51.79 << 51.15 49.42 47.11 44.63 42.03 39.31 36.51 33.62 30.69 27.73 24.79 21.90 19.15 16.63 14.47 12.81 11.73 11.04	12.85 12.88 12.92 12.95 12.98 13.02 13.05 13.08 13.12 13.15 13.18 13.22 13.25 13.35 13.32 13.35 13.42 13.45 13.45 13.55 13.62 13.65 13.62 13.75 13.75 13.75 13.78 13.82 13.85	10.55 10.12 9.72 9.36 9.02 8.72 8.44 8.18 7.95 7.73 7.54 7.20 7.04 6.52 6.40 6.52 6.40 6.52 6.40 6.52 6.40 6.52 6.40 6.52 6.40 6.52 6.40 6.52 6.40 6.52 6.40 6.52 6.40 6.52 6.40 6.52 6.40 6.52 6.40 6.52 6.40 6.52 6.40 6.52 6.40 6.52 6.53 6.54 6.54 6.55 6.55 6.55 6.55 6.55 6.55

Hyd. No. 9

2 YR POST DEV ROUTED

Hydrograph type = Reservoir

Storm frequency = 2 yrs Inflow hyd. No. = 5 Max. Elevation = 52.89

= 52.89 ft

Peak discharge Time interval

= 18.51 cfs

= 5 min

Reservoir name

= REVISED POND SE

= 187,468 cuft Max. Storage

Storage Indication method used.

Total Volume = 341,056 cuft

Hydrograph Discharge Table

Time (hrs)	inflow cfs	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	Clv D cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Outflow cfs
12.17	91.12	51.58	110.44	0.78	12.47						13.24
12.33	54.72	52.53	119.37		16.36						17.24
12.50	23.67	52.87	122.38		17.54						18.45
12.67	15.38	52.87	122.39		17.54						18.45
12.83	12.25	52.80	121.72		17.28						18.19
13.00	10.46	52.68	120.73	0.89	16.90						17.79
13.17	9.32	52.56	119.58		16.45						17.73
13.33	8.42	52.42	118.35		15.95	*****		*****			16.82
13.50	7.70	52.28	117.06		15.42						16.27
13.67	7.08	52.13	115.74		14.87						15.70
13.83	6.53	51.99	114.41		14.29						15.11
14.00	6.04	51.85	113.07		13.69						14.50
14.17	5.61	51.71	111.74		13.08						13.87
14.33	5.30	51.57	110.43		12.46						13.24
14.50	5.09	51.45	109.18	0.76	11.84						12.60
14.67	4.93	51.32	107.98	0.75	11.22					*****	11.97
14.83	4.77	51.21	106.85		10.62				******		11.35
15.00	4.62	51.11	105.78	0.72	10.01						10.73
15.17	4.45	51.01	104.79		9.43						10.14
15.33	4.29	50.91	103.76		8.76						9.45
15.50	4.13	50.82	102.83	0.68	8.14						8.82
15.67	3.97	50.74	102.01		7.00						7.68
15.83	3.80	50.68	101.37	0.67	5.99						6.65
16.00	3.64	50.63	100.88		5.20						5.86
16.17	3.48	50.60	100.49		4.62						5.27
16.33	3.37	50.56	100.14		4.49						5.14
16.50	3.30	50.53	99.79	0.65	4.37						5.02
16.67	3.24	50.50	99.46	0.64	4.25						4.90
16.83	3.18	50.47	99.13	0.64	4.14						4.78
17.00	3.12	50.44	98.82	0.63	4.03						4.67
17.17	3.06	50.41	98.52	0.63	3.93					de la compani	4.56
17.33	3.01	50.39	98.23	0.63	3.72						4.34
17.50	2.95	50.36	97.98	0.62	3.43						4.06
17.67	2.89	50.35	97.77	0.62	3.20						3.82
17.83	2.83	50.33	97.60	0.62	3.00						3.62
18.00	2.77	50.32	97.45	0.62	2.83						3.45

Continues on next page...

Hydrograph Discharge Table

Time (hrs)	Inflow cfs	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	Clv D cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Outflow cfs
18.17	2.71	50.31	97.32	0.61	2.69	*					3.30
18.33	2.65	50.29	97.21	0.61	2.56						3.17
18.50	2.59	50.29	97.11	0.61	2.44					*****	3.06
18.67	2.53	50.28	97.02	0.61	2.34						2.95
18.83	2.47	50.27	96.94	0.61	2.25						2.86
19.00	2.41	50.26	96.86	0.61	2.16						2.77
19.17	2.35	50.26	96.79	0.61	2.08						2.69
19.33	2.29	50.25	96.72	0.61	2.01		*****				2.61
19.50	2.23	50.24	96.66	0.61	1.93					~	2.54
19.67	2.17	50.24	96.60	0.60	1.86						2.47
19.83	2.11	50.23	96.54	0.60	1.80					~~~~	2.40
20.00	2.05	50.23	96.48	0.60	1.73						2.33
20.17	1.99	50.22	96.42	0.60	1.66						2.27
20.33	1.95	50.22	96.37	0.60	1.60						2.21
20.50	1.94	50.21	96.32	0.60	1.55						2.15
20.67	1.92	50.21	96.28	0.60	1.50				*		2.10
20.83	1.91	50.21	96.25	0.60	1.47						2.07
21.00	1.90	50.20	96.22	0.60	1.43					~~	2.03
21.17	1.89	50.20	96.19	0.60	1.40						2.00
21.33	1.88	50.20	96.17	0.60	1.38						1.98
21.50	1.87	50.20	96.14	0.60	1.36						1.96
21.67	1.85	50.20	96.11	0.60	1.35						1.95
21.83	1.84	50.20	96.09	0.60	1.34						1.94
22.00	1.83	50.19	96.06	0.60	1.33			***			1.93
22.17	1.82	50.19	96.03	0.60	1.32						1.91
22.33	1.81	50.19	96.00	0.60	1.30						1.90
22.50	1.80	50.19	95.97	0.60	1.29						1.89
22.67	1.78	50.19	95.94	0.60	1.28						1.88
22.83	1.77	50.19	95.91	0.60	1.27						1.87
23.00	1.76	50.18	95.88	0.60	1.26						1.85

Hyd. No. 2

10 YEAR PRE-DEV

Hydrograph type = SCS Runoff Peak discharge = 116.17 cfsStorm frequency Drainage area Basin Slope = 10 yrs Time interval = 1 min = 47.00 acCurve number = 72 = 3.5 % Hydraulic length = 1600 ftTc method = LAG Time of conc. (Tc) = 31.3 minTotal precip. = 5.80 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

Total Volume = 482,602 cuft

Hydrograph Discharge Table

Time (hrs	Outflow cfs)	Time (hrs	Outflow cfs)
11.72 11.75 11.78 11.82 11.85 11.85 11.95 11.95 12.05 12.05 12.05 12.15 12.15 12.15 12.15 12.22 12.25 12.35 12.38 12.42 12.45 12.48 12.55 12.65 12.65 12.68 12.75	12.34 14.76 17.91 22.10 27.61 34.76 43.89 54.46 65.67 76.67 87.02 96.51 104.75 111.18 115.22 116.17 << 113.74 109.10 103.28 97.16 90.82 84.30 77.65 70.92 64.17 57.47 50.89 44.54 38.56 33.19 28.65 25.22	12.78 12.85 12.85 12.88 12.92 12.95 12.98 13.02 13.05 13.08 13.12 13.15 13.18 13.22 13.25 13.28 13.35 13.38 13.42 13.45 13.48 13.52 13.55	23.01 21.60 20.62 19.75 18.94 18.21 17.53 16.92 16.36 15.84 15.37 14.56 14.20 13.87 13.57 13.02 12.76 12.52 12.28 12.05 11.83 11.62

Hyd. No. 6

10 YEAR POST-DEV

Hydrograph type	= SCS Runoff	Peak discharge	= 183.47 cfs
Storm frequency	= 10 yrs	Time interval	= 5 min
Drainage area	= 47.00 ac	Curve number	= 82
Basin Slope	= 3.7 %	Hydraulic length	= 1600 ft
Tc method	= LAG	Time of conc. (Tc)	= 22.6 min
Total precip.	= 5.80 in	Distribution ` ´	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Total Volume = 648,925 cuft

Hydrograph Discharge Table

Time	Outflov
(hrs	cfs)
11.67	24.38
11.83	66.13
12.00	158.68
12.17	167.91
12.33	98.39
12.50	41.30
12.67	26.62
12.83	21.11

Hyd. No. 10

10 YR POST DEV ROUTED

Hydrograph type Storm frequency Inflow hyd. No. Max. Elevation = Reservoir = 10 yrs

 $= 54.81 \, \mathrm{ft}$

Peak discharge = 114.28 cfsTime interval = 5 min

= REVISED POND SE Reservoir name

Max. Storage = 263,700 cuft

Storage Indication method used.

Total Volume = 643,103 cuft

Hydrograph Discharge Table

Time (hrs)	inflow cfs	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	Clv D cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Outflow cfs
12.00	158.68	52.41	118.26	0.87	15.92			05			16.78
12.17	167.91	54.41			22.10		62.92				86.06
12.33	98.39	54.81 <<	138.31		22.35		91.07				114.28 <<
12.50	41.30	54.34	134.64	1.04	21.91		58.22				81.17
12.67	26.62	53.85	130.68		20.55		29.48				51.04
12.83	21.11	53.56	128.26		19.70		15.74				36.42
13.00	17.98	53.37	126.65		19.12		8.44				28.52
13.17	15.97	53.23	125.48		18.70		4.22				23.87
13.33	14.40	53.12	124.54		18.35	~~~~	1.99				21.28
13.50	13.15	53.02			18.03		0.35				19.31
13.67	12.07	52.92	122.80	0.92	17.70						18.61
13.83	11.12	52.81	121.81	0.90	17.32						18.22
14.00	10.28	52.68	120.73	0.89	16.90	*****					17.79
14.17	9.53	52.56	119.59	0.88	16.45						17.33
14.33	8.99	52.43	118.41	0.87	15.98						16.84
14.50	8.63	52.30		0.85	15.49						16.34
14.67	8.35	52.17		0.84	15.01						15.85
14.83	8.08	52.05		0.83	14.52						15.34
15.00	7.80	51.93		0.81	14.03						14.84
15.17	7.52	51.81	112.72		13.54						14.34
15.33	7.25	51.70		0.79	13.04						13.83
15.50	6.97	51.59			12.55						13.33
15.67	6.69	51.49			12.05						12.81
15.83	6.40	51.39			11.56			~~			12.31
16.00	6.12	51.29	107.66	0.74	11.05		*****				11.79

Hyd. No. 3

25 YEAR PRE-DEV

Hydrograph type = SCS Runoff = 151.09 cfsPeak discharge Storm frequency = 25 yrsTime interval = 1 min Drainage area Basin Slope = 47.00 ac= 72 Curve number = 3.5 % Hydraulic length = 1600 ft Tc method = LAG Time of conc. (Tc) = 31.3 min Total precip. = 6.80 inDistribution = Type II Storm duration = 24 hrs Shape factor = 484

Total Volume = 624,143 cuft

Hydrograph Discharge Table

Time	Outflow cfs)	Time	Outflow
(hrs		(hrs	cfs)
11.68 11.72 11.75 11.78 11.82 11.85 11.95 12.05 12.05 12.15 12.25 12.25 12.35	15.20 17.72 21.01 25.28 30.91 38.25 47.69 59.63 73.32 87.77 101.86 115.04 127.05 137.38 145.32 150.12 150.95 147.47 141.18 133.43 125.28 116.88 108.28 99.52 90.69 81.86 73.13 64.59 56.38 48.69 41.80 36.00	12.75 12.78 12.82 12.85 12.88 12.92 12.95 12.98 13.02 13.05 13.08 13.12 13.15 13.18 13.22 13.25 13.28 13.35 13.38 13.42 13.45	31.64 28.84 27.06 25.82 24.72 23.70 22.77 21.92 21.14 20.43 19.78 19.19 18.66 17.71 17.30 16.92 16.56 16.23 15.90 15.60 15.30

Hyd. No. 7

25 YEAR POST-DEVELOPMENT

Hydrograph type Storm frequency Drainage area Basin Slope Tc method Total precip. Storm duration	= 25 yrs = 47.00 ac = 3.7 % = LAG = 6.80 in	Time interval Curve number Hydraulic length Time of conc. (Tc) Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Total Volume = 806,819 cuft

Hydrograph Discharge Table

Time	Outflov
(hrs	cfs)
11.67	31.60
11.83	84.05
12.00	197.49
12.17	206.89
12.33	120.39
12.50	50.11
12.67	32.22
12.83	25.53

Hyd. No. 4

100 YEAR PRE-DEV

Hydrograph type = SCS Runoff
Storm frequency = 100 yrs
Drainage area = 47.00 ac
Basin Slope = 3.5 %
Tc method = LAG
Total precip. = 8.60 in
Storm duration = 24 hrs

Peak discharge = 216.18 cfs
Time interval = 1 min
Curve number = 72
Hydraulic length = 1600 ft
Time of conc. (Tc) = 31.3 min
Distribution = Type II
Shape factor = 484

Total Volume = 891,574 cuft .

Hydrograph Discharge Table

Time	Outflow	Time	Outflow cfs)
(hrs	cfs)	(hrs	
11.67 11.70 11.73 11.77 11.80 11.83 11.87 11.90 12.03 12.07 12.10 12.13 12.17 12.20 12.13 12.17 12.23 12.27 12.30 12.33 12.47 12.40 12.43 12.47 12.50 12.53 12.57 12.60 12.63 12.67 12.70	22.91 26.26 30.63 36.25 43.56 53.08 65.29 80.67 99.25 119.40 139.66 158.78 176.32 191.78 204.25 212.74 216.18 << 213.44 205.80 195.11 183.35 171.23 158.81 146.18 133.43 120.69 108.07 95.71 83.77 72.46 62.14 53.19	12.73 12.77 12.80 12.83 12.87 12.90 12.93 12.97 13.00 13.03 13.07 13.10 13.13 13.17 13.20 13.23 13.27 13.30 13.33 13.37	46.05 41.16 38.05 36.07 34.47 33.01 31.67 30.44 29.32 28.30 27.36 26.51 25.74 25.03 24.38 23.79 23.24 22.74 22.26 21.81

Hyd. No. 8

100 YEAR POST DEVELOPMENT

Hydrograph type	= SCS Runoff	Time interval Curve number Hydraulic length Time of conc. (Tc) Distribution	= 305.57 cfs
Storm frequency	= 100 yrs		= 5 min
Drainage area	= 47.00 ac		= 82
Basin Slope	= 3.7 %		= 1600 ft
Tc method	= LAG		= 22.6 min
Total precip.	= 8.60 in		= Type II
Storm duration	= 24 hrs		= 484

Total Volume = 1,097,217 cuft

Hydrograph Discharge Table

(hrs	cfs)
11.58	31.93
11.75	70.96
11.92	192.69
12.08	305.57 <<
12.25	217.93
12.42	106.81
12.58	48.38
12.75	37.23
12.92	30.59

Hyd. No. 12

100 YR POST DEV ROUTED

Hydrograph type = Reservoir Storm frequency = 100 yrs Inflow hyd. No. = 8

Max. Elevation

= 56.42 ft

Peak discharge

= 242.61 cfs

Time interval

= 5 min

Reservoir name

= REVISED POND SE

= 336,376 cuft Max. Storage

Storage Indication method used.

Total Volume = 1,091,386 cuft

Hydrograph Discharge Table

Time (hrs)	inflow cfs	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	Clv D cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Outflow cfs
12.00	267.77	54.75	137.90		22.49		87.16				110.54
12.17	277.12	56.36	149.86				230.76	84.56			234.42
12.33	159.88	56.17	148.53				211.93	61.28			209.81
12.50	65.88	55.35	142.49	0.39	10.11		135.44				141.72
12.67	42.24	54.43	135.38	1.03	22.15		64.32		*****		87.50
12.83	33.43	53.94	131.44	1.01	20.82		34.42				56.24
13.00	28.42	53.68	129.25	0.99	20.05		21.01				42.04
13.17	25.21	53.51	127.85	0.97	19.56		13.82				34.35
13.33	22.70	53.39	126.86	0.96	19.20		9.23				29.39
13.50	20.71	53.30	126.08		18.92	*****	6.41				26.28

5248 Olde Towne Road • Suite 1 • Williamsburg, Virginia 23188 (757) 253-0040 • Fax (757) 220-8994 • E-mail aes@aesva.com

June 14, 1999

Mr. Darryl E. Cook, Environmental Director James City County 101-E Mounts Bay Road Williamsburg, Virginia 23185

RE: VDOT/ WILLIAMSBURG PLANTATION COMBINED DRY POND

Dear Mr. Cook:

Please find enclosed three sets of revised 11"x17" plans for the above mentioned project. During a review of these plans, an error was found in the top elevation call for the DI outlet structure. The top elevation is to be **51.90**, not 51.790. The details of the outlet structure appearing on sheet two are correct.

Should you have any questions regarding these drawings or the pond design, please contact me at 253-0040. I would be happy to discuss your concerns.

Sincerely,

AES Consulting Engineers

Deirdre P. Wells Project Engineer

 $S: \label{local-proc} S: \label{local-proc$

5248 Olde Towne Road • Suite 1 • Williamsburg, Virginia 23188 (757) 253-0040 • Fax (757) 220-8994 • E-mail aes@aesva.com

FILE COPY

June 3, 1999

Mr. O. Marvin Sowers, Director of Planning James City County P.O. Box 8784 Williamsburg, Virginia 23187-8784

RE: Joint Williamsburg Plantation and VDOT Stormwater Management Pond AES Project No. 7555-6

Dear Mr. Sowers:

Please find enclosed 3 sets of plans and calculations for the joint stormwater management facility for the VDOT Route199 and the Williamsburg Plantation projects. We are sending copies of this "final" plan to your office for County review (and approval) to insure that this facility meets the County design requirements.

This facility is in the location shown on the approved Williamsburg Plantation as the Stormwater Management Pond for Phase III. The **proposed** combined facility has come about as part of a **tentative** agreement between VDOT and Williamsburg Plantation necessitated by VDOT's need for Stormwater Management facilities in this area for the Route 199 project. This facility is located on the land originally condemned by VDOT for the Route 199 project; however, the land is now **proposed** to remain under the ownership of Williamsburg Plantation with an easement granted to VDOT.

The joint facility has been designed as a pond with a shallow marsh bottom in order to fulfill the James City County requirements for a 9-point BMP facility. While the bottom of the pond is not depressed as per the normal shallow marsh design, wetland species have proliferated in the existing VDOT dry pond due to the high water table at the site. With that knowledge in mind, in our enlargement of the existing pond we maintained the existing bottom elevations to insure continued growth of wetland species. Of course, this **proposed** pond fulfills the VDOT criteria for flow attenuation serving their primary road system and they have approved the attached plans. Several different design options were explored by AES to incorporate the existing outlet structure and, thus, retain the integrity of the structure. The attached design requires that the crest of the outlet structure be raised, a process which may be completed "inplace" and will not compromise its integrity.

Mr. O. Marvin Sowers, Director of Planning June 3, 1999 Page 2

The pond currently constructed at the site is a single use pond by VDOT on right-of-way they acquired by condemnation. This pond will remain as is until Williamsburg Plantation needs additional stormwater capacity for the future phases of their project. Then Williamsburg Plantation will reconstruct the pond per the attached plans under a permit granted by VDOT as part the overall agreement between VDOT and Williamsburg Plantation. The attached site plan indicates the location of the **proposed** stormwater management pond and shows the permanent easement that will be dedicated to VDOT as part of the overall agreement between VDOT and Williamsburg Plantation. This easement has been placed such that conflicts will be avoided with proposed buildings, roads, and parking lots associated with proposed Williamsburg Plantation development.

If there are specific questions related to the pond calculations, please contact Deirdre Wells at our office. If there are general questions on location, operation, or maintenance, please contact Richard Costello.

Sincerely,

AES Consulting Engineer

Richard A. Costello, P.E.

President

Enclosures

cc:

Richard Gordon - Tanner, Mulkey and Gordon

J. Brady Pittman – HDL

Corinna Caldwell - Williamsburg Plantation

S:\UOBS\7555\06\WORDPROC\DOCUMENT\755506L04.rac.doc

James City County Development Management Fax

Name: Déclie Wells	
Firm or Company: AES	
Facsimile Number:	
Number of pages including this transmittal:	
From: Civile	
James City County P.O. Box 8784 Williamsburg, Virginia 23187-8784 Office Phone: 757-253 Fax Number: 757-253-6850	
Comments:	· · · · · · · · · · · · · · · · · · ·

DEVELOPMENT MANAGEMENT

101-E Mounts Bay Road, P.O. Box 8784, Williamsburg, Virginia 23187-8784 (757) 253-6671 Fax: (757) 253-6850 E-mail: devtman@james-city.va.us

CODE COMPLIANCE (757) 253-6626 codecomp@james-city.va.us

Environmental Division (757) 253-6670 environ@james-city.va.us

Planning (757) 253-6685 planning@james-city.va.us COUNTY ENGINEER
(757) 253-6678
INTEGRATED PEST MANAGEMENT
(757) 253-2620

August 23, 1999

Ms. Deirdre Wells AES Engineering 5248 Olde Towne Road, Suite 1 Williamsburg, VA 23188

RE: VDOT/Williamsburg Plantation Combined BMP

Dear Ms. Wells:

I have reviewed the plan and calculations you provided regarding the modification of the BMP facility that is to be shared by VDOT and Williamsburg Plantation and I have the following comments:

- 1. There is no proposed permanent pool for the marsh system. Although there is a large amount of wetlands vegetation growing in the bottom of the BMP due to the presence of groundwater, a wetland BMP attains its high removal efficiencies through the permanent retention of a certain volume of water. This retainage of water allows for the removal of nutrients by biological uptake. The facility as designed would release all the water from a given storm within approximately 24 hours, which would not allow for biological uptake to occur. Therefore, the elevation of the low release orifice needs to be raised to elevation 47.5 to create the retention area for the marsh. This will not require the removal of soil or vegetation from the existing bottom of the BMP but may require adjustment to other release stuctures.
- 2. Although I understand the stormwater requirements for the two projects differ in that the VDOT BMP does not need to meet our water quality criteria, it is not valid to design the wetland area only on the basis of the Williamsburg Plantation drainage area. In order to provide for the requirements of the watershed, a marsh volume of 25,604 cubic feet would be required for to be retained. At elevation 47.5, a storage volume of about 37,000 cubic feet is provided. This exceeds the volume requirement. However, the minimum required surface area to meet the loading requirements is 35,300 square feet while the pond provides about 25,000 cubic feet. However, as the BMP controls additional volume above the minimum requirement for the water quality volume drawdown, 88,057 vs. 56,898 cubic feet

required this will be acceptable. However, when the BMP is redesigned with the permanent 6-inch deep marsh, a similar excess volume will need to be provided to account for the shortfall in the marsh surface area.

3. When the pond is resubmitted, please revise the calculations in total; don't submit just the revised pages as it is difficult to follow the changes.

If you have any questions regarding this matter, please contact me at 253-6673.

Sincerely,

Darryl E. Cook

Darryl & Cook

Environmental Director, P.E.

COMMONWEALTH of VIRGINIA

DEPARTMENT OF TRANSPORTATION
1401 EAST BROAD STREET
RICHMOND, 23219-1939

CHARLES D. NOTTINGHAM ACTING COMMISSIONER

New

October 22, 1999

To: All VDOT Drainage Designers

From: Charles McIver, State Hydraulics Engineer

Subject: REVISED STORMWATER MANAGEMENT REGULATIONS

Enclosed please find a draft version of I&I Memo LD-99(D)195.3 dated September 14, 1999. This draft is final and complete except it does not include copies of the insertable sheets which constitute the last 4 pages of the memo. Formal distribution of the I&I will be made as soon as the drawings are available. Also attached are some excerpts from the new State SWM Handbook and some example computations for water quality volume, water quality orifice sizing and drawdown time. The attachment (1998 STATE SWM REGULATIONS & 1999 SWM HANDBOOK) includes a list of the main points of the revisions on the cover sheet.

The State SWM Regulations were revised in 1998 but the revisions could not be implemented until the State SWM Handbook was distributed in 1999. The attached I&I Memo has been reviewed by the State Department of Conservation and Recreation (DCR) and is now approved after some comments from DCR were added to the memo.

Please note that the effective date of this memo is applicable upon receipt. Also note that the intent of implementation is not to delay plan development for the sole purpose of compliance with the revised SWM regulations.

If you have any questions about applying the new SWM regulations, please contact the VDOT central office Hydraulics Section. Some form of additional instruction will follow in the near future.

For Scott Thomas VIRGINIA DEPARTMENT OF TRANSPORTATION

LOCATION AND DESIGN DIVISION

INSTRUCTIONAL AND INFORMATIONAL MEMORANDUM

GENERAL SUBJECT:	NUMBER:
MANAGEMENT OF STORMWATER	LD-99 (D) 195.3
SPECIFIC SUBJECT:	DATE:
Engineering and Plan Preparation	November 17, 1999
	SUPERSEDES: LD-94 (D) 195.2
SIGNATURE:	
Changes are shaded	
EFFECTIVE DATE	
 This memo is effective upon receipt for all projects entering development. For projects that are past the Field Inspection Management design should not be made if only for the purprevisions should be made if significant plan revisions are need not delay plan development or project construction for the memo. 	on stage, revisions in the Stormwater oose of complying with this memo, but
CURRENT REVISION	
• Expanded instructions for Water Quantity Control and W Stormwater Management Basins, and for compliance wire Stormwater Management Regulations and the Stormwater Management of Conservation and Recreation (DCR).	Vater Quality Control, the design of the latest revisions to the State anagement Handbook produced by the
BACKGROUND	

Acts of the General Assembly have resulted in the issuance of Stormwater Management (SWM) and Erosion and Sediment Control (E&S) regulations. The general application to highway operations associated with these regulations is addressed in this memorandum. Instructions for the incorporation of the E&S details in plan assemblies are contained in the current version of IIM LD-(D) 11.

Instructional & Informational Memorandum LD-99 (D) 195.3 Sheet 2 of 19

- Additional details and examples of the engineering application of the State SWM regulations in the
 design of VDOT projects can be obtained from the VDOT Hydraulics Section in any of the various
 district offices or the central office in Richmond.
- Further details and information regarding either the State SWM Regulations or the E&S Regulations can be obtained from: Virginia Department of Conservation and Recreation (DCR), 203 Governor Street, Richmond, VA 23219 or via the Internet: www.state.va.us/~dcr. Details may also be obtained from the SWM Handbook and the E&S Handbook published by DCR and available for reference in all VDOT Hydraulics Sections.

OBJECTIVE				
SWM -				
program that m	deterioration of the aquatic e aintains both water quantity a cable, equal to or better than p	nd quality post dev	elopment runoff char	management racteristics, as
E&S			-	
To effectively c soil erosion and	control soil erosion, sediment to prevent any sediment from	deposition, and pos escaping the projec	t development runof et limits.	f to minimize
CRITERIA				
General				

- The runoff control provisions of both regulations are complementary and will be addressed under a single set of criteria. The information and instructions contained in this memorandum supersede all previous departmental documents. Where there are conflicts with previous instructions, this memorandum shall take precedence.
- The Erosion and Sediment Control Regulations apply to all activities that disturb 929 square meters (10,000 square feet) or more of land area.
- The Stormwater Management Regulations are applicable to all state projects.

EXEMPTIONS

- Linear development (highway) projects are the stormwater management REGULATIONS provided that:
 - Less than one acre of new impervious area will be added per outfall and
 - Ithere will be insignificant increase in peak-flow rates and
 - 3. There are no existing or anticipated flooding or erosion problems downstream

Instructional & Informational Memorandum LD-99 (D) 195.3 Sheet 3 of 19

- "State Projects" are those land development activities wherein VDOT has funded any portion of the design, right of way acquisition, or construction (including public/private partnerships used for constructing state highways). Projects which are designed and constructed by other parties and that are accepted into the state system for maintenance after completion of construction (including subdivision streets) are not considered state projects and must conform to appropriate local regulations. Land development activities occurring within existing VDOT right of way, which are allowed by permit and which are designed, constructed, and funded by other parties, are not considered state projects and must conform to appropriate local regulations.
- "Land Development Project" is defined as a manmade change to the land surface that potentially changes its runoff characteristics as a permanent condition. The permanent condition should consider the effects of mature vegetative cover and should not be concerned with temporary changes due to construction activities. The temporary changes are addressed by the E&S regulations.

Water Quantity Control

- Water quantity control shall be governed by the Virginia Erosion and Sediment Control Regulations Minimum Standard 19 which requires an adequate receiving channel for stormwater outflows from all projects with more than 929 square meters (10,000 square feet) of land disturbance.
- Receiving channels, pipes and storm sewers shall be reviewed for adequacy based upon the following criteria:

Natural channels shall be analyzed by the use of a 2-year storm to verify that stormwater will not overtop channel banks or cause erosion of the channel bed and banks. All previously constructed manmade channels shall be analyzed by the use of a 10-year frequency storm to verify that the stormwater will not overtop the banks and analyzed by the use of a 2-year storm to verify that the stormwater will not cause erosion of the bed or banks. Pipes and storm sewer systems shall be analyzed by the use of a 10-year frequency storm to verify that the stormwater will be contained within the pipe or storm sewer system. The receiving channel at the outlet of the pipe or storm sewer shall be analyzed for adequacy of the 2 year storm for natural channels or the 10 year storm for man made channels.

- Water quantity control for the Layear storm (in lieu of the 2 year storm required by Minimum Standard 19) may be needed if there is existing or anticipated erosion downstream. Control of the 1 year storm requires detaining the volume of runoff from the entire drainage area and releasing that volume over a 24 hour period. The computations are similar to those used for detaining the Water Quality Volume (WQV) and releasing over a 30 hour period. See the SWM Handbook by DCR: pages 1-23 and 5-38 thru 5-41. When the I year storm is detained for 24 hours there will be no need to provide additional or separate storage for the WQV if it can be demonstrated that the WQV will be detained for approximately 24 hours. The control of the I year storm may require a basin size that is 1.5 to 2 times larger than a basin used to control the increase in Q from a 2 year or a 10 year storm.
- Pre-development conditions shall be that which exist at the time the road plans are approved for right of way acquisition. All land cover shall be assumed to be in good condition regardless of actual conditions existing at the time the computations are made.

Aug-24-00 05:28P VDOT
Instructional & Informational Memorandum
LD-99 (D) 195.3
Sheet 4 of 19

- Impounding structures (dams) that are not covered by the Virginia Dam Safety Regulations shall be checked for structural integrity and floodplain impacts for the 100-year storm event.
- Outflows from the stormwater management facilities shall be discharged into an adequate receiving channel.
- Existing swales being utilized as natural outfall conveyances for pre-development run-off will be
 considered as channels and, if the swale satisfactorily meets the criteria contained in Minimum
 Standard 19 of the Virginia Erosion and Sediment Control Regulations for post-development runoff, it will be considered as an adequate receiving channel.
- Surface runoff from drainage areas of three acres or more that pass through a disturbed area must
 be controlled by a sediment basin. The sediment basin shall be designed and constructed to
 accommodate the anticipated sediment loading from the land disturbing activity and adjacent
 property within the watershed that has a high erosion potential. The design of the outfall device or
 system shall take into account the total drainage area flowing through the basin.
- Construction of stormwater management facilities should be avoided in floodplains. When this is unavoidable, a special examination to determine the adequacy of the proposed stormwater management facilities during the 10-year flood shall be required. The purpose of this analysis is to ensure that the stormwater management facility will operate effectively. The stormwater management facility shall also be examined for structural stability during the passage of the 100-year flood event on the floodplain and shall be examined for any possible impacts caused by the basin on the 100-year flood characteristics of the floodplain. The construction of stormwater management facilities shall be in compliance with all applicable regulations under the National Flood Insurance Program.
- If it can be demonstrated that the total drainage area to the point of analysis within the receiving channel is 100 times greater than the contributing drainage area of the project, the receiving channel may be considered adequate, with respect to channel stability requirements under the Erosion & Sediment Regulations, without further computation.

Water Quality Control

- SWM design for water quality control is to be in accordance with the latest revisions to the Virginia SWM Regulations. The following comments represent the significant points of the current regulations and the page numbers given are referenced to the SWM Handbook from DCR.
- 1. BMP requirements for quality control are "Technology Based" and the type of BMP is determined by the percent of new impervious area within the site (or Right of Way) per outfall (SEE TABLE 1—BMP SELECTION TABLE) and also the drainage area size (in accordance with the general design criteria as outlined in the SWM Handbook)
- BMP requirements for flooding or quantity control are set by the Erosion and Sediment Control Regulations Minimum Standard 19 for adequate receiving channels.
- 3. Extended Detention Basins and Extended Detention Basins Enhanced require a Water Quality Volume (WQV) of 2x the standard WQV or 1" of Runoff from the new impervious area.

Instructional & Informational M-morandum LD-99 (D) 195.3 Sheet 5 of 19

- 4. Extended Detention Basins and Extended Detention Basins Enhanced require a 30 hour drawdown time for the required WQV. The 3" minimum size water quality orifice has been eliminated. If the required orifice size is found to be significantly less than 3" an alternative water quality BMP should be investigated such as a linear facility which treats the first flush and allows large storms to overflow. The calculation procedure for drawdown time and orifice sizing is shown on PAGES 5-33 THRU 5-38 and also in example problems available from VDOT.
- 5. Sediment Forebays should be used on Extended Detention Basins and Extended Detention Basins Enhanced with the volume set as 0.12 0.25 x the new impervious area or 10% of the required detention volume. SEE DETAILS PAGE 3104.6 The stabilized overflow spillway may be constructed of up rap occoncrete.
- 6. Suggested details for the Extended Detention Basin are shown on PAGES 3:07-04 AND 3:07-5. The rip rap lined low flow channel thru the basin is not recommended by VDOT due to maintenance concerns.
- 7. Suggested details for the Extended Detention Basin Enhanced are shown on PAGES 3.07-6 AND 3.07-7. The geometric design will probably need to be more symmetrical than shown in order to construct the basin to the dimensions needed.
- Non-structural practices including, but not limited to, control of land use development, minimization of impervious areas and curbing requirements, open space acquisition, floodplain management, and protection of wetlands may be utilized as appropriate in order to at least partially satisfy the water quality requirements. Approval of such non-structural measures will be secured in advance from the Department of Conservation and Recreation (DCR).

MULTI-USE BASINS	

Quantity Control - Quality Control - Temporary Sediment Storage

SWM basins will normally be used for both quantity control and for quality control. Under the revised regulations some basins may occasionally only be needed for quality control. Most SWM basins are needed to serve as temporary sediment basins and the design and computations will need to address the dual function. The design that is needed for a permanent SWM basin may need to provide additional temporary sediment storage volume that is in excess of the required WQV. The two different volumes (WQV and temporary sediment storage volume) should not be added together and the larger of the two should govern the design. The additional volume needed for sediment storage may be provided by excavating the bottom of the basin lower than required for WQV. The permanent outlet structure (riser or wall) can be temporarily altered to serve as the control structure for the sediment basin. (See the enclosed design detail drawings and the DCR SWM Handbook). When the project is nearing completion and the basin is no longer needed for sediment control, the basin can be easily converted to a permanent SWM basin.

fastructional & Informational Memorandum LD-99 (D) 195.3 Sheet 6 of 19

IMPLEMENTATION

Plan Preparation

- Standard and minimum plan projects shall show stormwater management and erosion control measures on the plans as directed in IIM LD- (D) 11 and the Road Design Manual.
- No-plan projects must have the erosion and sediment control measures included in the construction
 narrative addressing their placement. This narrative may be supplemented by appropriate "simple"
 sketches. Stormwater management facilities may be addressed in a similar fashion provided
 sufficient detail is included to ensure their proper construction. When this is not practicable,
 additional sketches shall be included in the no-plan assembly to define the construction of these
 items.
- Any other type of project activity that does not have a plan, such as some SAAP Projects, shall conform to the no-plan requirements.
- Maintenance activities which disturb more than 929 square meters (10,000 square feet) must have a plan developed by the appropriate personnel that addresses the erosion and sediment control requirements for that activity. Maintenance activities which involve a "Land Development Project" of one acre or more of land must have a stormwater management plan. The plan shall conform to the requirements for a no-plan project.
- Normal ditch cleaning and pulling of shoulders are <u>not</u> considered land disturbing activities for the purposes of erosion and sediment control if less than 929 square meters (10,000 square feet) of drainage area is disturbed feeding any one pipe or ditch outlet.

Foundation Data

- Foundation data (a soil boring) for the base of the dam should be requested for all Stormwater Management Basins in order to determine if the native material will support the dam and not allow ponded water to seep under the dam. An additional boring near the center of the basin should also be requested if:
 - 1. Excavation from the basin may be used to construct the dam, OR

2. Rock may be encountered in the area of excavation, OR

3. A high water table is suspected which may alter the performance of the SWM basin.

For large basins, more than one boring for the dam and one boring for the area of the basin may be needed. The number and locations of the borings are to be determined by the drainage designer.

• The foundation data should be requested by the drainage designer when the request is initiated for culvert foundation data. See IIM LD- (D) 121.

Right of Way

• Permanent stormwater management facilities may be placed in fee right of way or in permanent easements. It is recommended that all permanent stormwater management facilities (dams, ponds, risers, etc.) be placed within fee right of way initially. Ditches and similar features may initially be placed in permanent easements. The final decision on right of way versus permanent easement can be made at the field inspection or as a result of the design public hearing. The Department will generally be amenable to the desires of affected landowners in this matter. The multiple use of property for stormwater management and such features as utilities is permissible. The decision on the advisability of such actions must be made on an individual site basis.

Table 1:

BMP SELECTION TABLE

Water Quality BMP	Target Phosphorus Removal	Percent Impervious
and the second s	Efficiency	Cover*
Vegetated filter strip	10%	16-21%
Grassed swale	15%	
Constructed wetlands	30%	
Extended detention (2xWQ Vol)	35%	22-37%
Retention basin I (3xWO Vol.)	40%	
Bioretention basin	50%	
Bioretention filter,	50%	
Extended detention-enhanced	50%	38-66%
Retention basin II (4xWQ Vol)	50%	
Infiltration (1xWQ Vol)	5-50%	
Sand filter	65%	
Intilitatration (2xWQ Vol)	65%-7-5-	67-100%
Retention basin III (4xWQ Vol	65%	
with aquatic bench)		

^{*} Innovative or alternate BMPs not included in this table may be allowed at the discretion of DCR.

^{**} Percent Impervious Cover: New impervious area within the site or Right of Way per outfall.

Instructional & Informational Memorandum LD-99 (D) 195.3 Sheet 8 of 19

DETAILS FOR DESIGN OF DAMS

VDOT STORMWATER MANAGEMENT BASINS

The following details are to be incorporated into the design of WDOT Stormwater Management (SWM) Basins in order to be in compliance with the State SWM Regulations Revisions of 1998 and the SWM-HANDBOOK of the Virginia Department of Conservation and Recreation (DGR) The revisions are also due to concerns with seepage thru the dam and along the culvert due to the ponding of water in the basins being of longer duration than previous designs that used a minimum 3" water quality orifice.

- 1. Foundation data for the dam is to be secured from the Materials Division in order to determine if the native material will support the dam and not allow ponded water to seep under the dam
- 2. The foundation material under the dam, and the material used for the embankment of the dam should be type A-4 or finer, and/or meet the approval of the Materials Division. If the native material is not adequate, the foundation of the dam is to be undercut a minimum of 4' for the recommendation of the Materials Division. The backfill and embankment material must meet the above soil classification or the design of the darn may incorporate a trench lined with a membrane (such as bentonite penetrated fabric or an HDPE or LDPE liner) and be approved by the Materials
- 3. The pipe culvert under or thru the dam is to be concrete sewer pipe with rubber gaskets. Pipe Specifications: 232 (AASHTO M170), Gasket Specification: 212 (ASTM C443)
- The second secon 4. A concrete cradle is to be used under the pipe to prevent seepage thru the dam. The concrete cradle is to extend from the riser or inlet end of the pipe to the outlet of the pipe. See attached Special Design Drawing No. 2209.
- 5. If the height of the dam is greater than 15' the design of the dam is to include a Homogenous Embankment with seepage controls or Zoned Embankment or similar design and is to be approved by the Materials Division.
 - *In accordance with the AASHTO Classification System (M145)

DESIGN GUIDELINES FOR STORMWATER (SWM) BASINS

The top width (W) of the SWM basin dam should be 3m (10') minimum to facilitate both construction and maintenance.

The side slopes should be no steeper than 3:1 to permit mowing and cleanout. The bottom slope of the basin should be no more than 2% or no less than 0.5%.

The depth of the basin to the primary overflow (crest of riser, or orifice or weir) should be no more than Im (3 ft.) if possible, in order to reduce the hazard potential. If the depth needs to be more than about Im (3 ft.) fencing should be considered.

All SWM basins should be reviewed for the needs of fencing, barricades and no trespassing signs in accordance with the VDOT guideline for Fencing of SWM Basins.

The length to width ratio should be about 3:1 (wider at the outlet end). If the ratio is less than about 2:1, and if there is concern that the velocity of flow through the basin is high, consideration should be given to using baffles within the basin to reduce velocity. Baffles should be constructed of "pervious" type material such as snow fence rather than earth berms which do not reduce the velocity.

Instructional & Informational Memorandum LD-99 (D) 195.3 Sheet 10 of 19

Perimeter Controls

Fencing of SWM Basins

- Fencing of stormwater management basins is normally not required and should not be used for most basins due to:

Insignificant Hazard

Ponding of water in the basin should only occur with very heavy storms and be noticeable for airew-hours. The ponded depth will normally be no more than about 1 meter (3 feet). Ponds and lakes are almost never fenced, even though they may be located in subdivisions and have deep, permanent ponding.

• Limits Maintenance

Fencing will limit maintenance operations and could deter the frequency of maintenance. Maintenance operations can damage fencing particularly if equipment becomes stuck.

- Fencing of SWM basins may occasionally be needed and should be used when:
 - Basin is deep with ponded depth greater than about 1 meter (3 feet) and/or has steep side slopes with 2 or more side slopes steeper than 3:1;

or

 Basin is in close proximity to schools, playgrounds or similar areas where children must be expected to frequent;

or

• Recommended by the Field Inspection Report, the Resident Engineer or the City/County (where City/County will take over maintenance responsibility.)

Barricades

- A chain or gate may be needed on some basins to prohibit vehicular access if there is concern with dumping or other undesirable access.

Signs

 "No Trespassing signs" shall be considered for use on all basins, whether fenced or unfenced and should be recommended as needed on the Field Inspection Report.

Regional Facilities

- There are many cases where it is more feasible to develop one large stormwater management
 facility to control a watershed area rather than a number of small individual facilities controlling
 small drainage basins. The concept of regional stormwater management facilities is endorsed by
 VDOT provided that certain requirements are met.
- Development and use of regional stormwater management facilities must be a joint undertaking by VDOT and the local governing body. The site must be part of a master stormwater management plan developed by the local governing body and any agreements related to these facilities must be consummated between VDOT and the local governing body. VDOT will not enter into an agreement with private individuals or corporations.
- Where the roadway embankment serves as an impounding structure, the right of way line will
 normally be set at the inlet face of the drainage structure. The local government will be responsible
 for the maintenance and liabilities outside of the right of way and VDOT will accept the same
 responsibilities inside the right of way.
- Hydraulic design of regional management facilities must address any mitigation needed to offset increases in runoff from the roadway. Stormwater management facilities located upstream of the roadway shall provide sufficient mitigation of peak outflow to compensate for roadway runoff which may bypass the facility.

Maintenance

 Requirements for maintenance of stormwater management facilities, the recommended schedule of inspection and maintenance, and the identification of persons responsible for the maintenance will be addressed by the Maintenance Division.

Future Reconstruction

• If a stormwater management facility is constructed to address the increase in runoff from a current project and, at some time in the future, is displaced to accommodate future construction, a new facility constructed at that time must address increases in runoff due to the future construction and the increases in runoff that were mitigated by the original stormwater management facility.

Instructional & Informational Memorandum LD-99 (D) 195.3 Sheet 12 of 19

Reporting

• VDOT is required to submit an annual report to the Department of Conservation and Recreation (DCR) that identifies the location, number and type of stormwater management facilities installed during the preceding year, their storage capacities, the affected water body, and a summary of any water quality monitoring data associated with the facility. A database has been established on the Hydraulics Section's telecommunication file system to record this type of data for all projects. It shall be the responsibility of the district drainage engineer and the hydraulic design engineers in the Central office to ensure that the required information is logged on the database for all stormwater management facilities that are designed for roadway projects. In order for the database to reflect those facilities constructed during the preceding year, it is recommended that the required information be logged at the time of the first submission of plans to the Construction Division. The reporting period will be from July 1 to June 30.

PLAN DETAILS

Stormwater Management Drainage Structure Standard SWM-1

To be used at all applicable locations where a drop inlet type control structure is desired.

Stormwater Management Riser Pipe Standard SWM-RP

- To be used at all applicable locations where an open top manhole type control structure is desired.
- Diameters from 900 mm to 1500 mm in 150 mm increments (36" to 60" in 6" increments).
- Height of structure above outlet pipe invert should be limited to about 1 meter (3 feet) maximum.

Stormwater Management Dam

- To be used at locations where a wall type control structure is desired (includes modifications to standard endwalls). Normally used for shallow depths of ponding.
- Details to be provided for individual locations.

Details of control structures other than those above shall be submitted to the office of the State Hydraulics Engineer to facilitate future development of standard details.

Stormwater Management Details Standard SWM-DR

 Provide at each location requiring a water quality orifice. The size opening for the water quality orifice shall be specified for each basin.

Α	CC	e:	S

- A means of access for inspection and maintenance personnel shall be provided at each SWM facility location.
- A turnaround should be provided on vehicular entrances when needed based upon accessibility and traffic volume.
- Appropriate surface material shall be provided for each vehicular entrance.

Method of Measurement - Basis of Payment

Stormwater Management Drainage Structure (SWM-1):

Basis of payment to be linear meters (feet) measured from invert of structure to top of concrete cover.

Stormwater Management Riser Pipe:

• Basis of payment to be linear meters (feet) of the size specified measured from invert of , structure to the top of the structure.

Stormwater Management Dam:

• Basis of payment to be m³ (cubic yards) of Concrete Class A3 Miscellaneous and kilograms (pounds) of Reinforcing Steel.

Grading:

- Excavation for stormwater management basins will be measured and paid for as m³ (cubic yards) of Stormwater Management Basin Excavation.
- If additional fill material is needed for dams or berms this will be measured and paid for as m³ (cubic yards) of Regular Excavation, Borrow Excavation or Embankment.
- The Grading Diagram is to reflect how the m³ (cubic yards) of Stormwater Management Excavation and m³ (cubic yards) of Embankment or Borrow is to be distributed.

Stormwater Management Summary

- All items related to the construction of stormwater management facilities shall be summarized, by location, in a separate summary located on or near the Drainage Summary (see attached example).
- If Borrow or Embankment is needed, include in roadway totals on Grading Diagram and Summary.

Instructional & Informational Memorandum LD-99 (D) 195.3 Sheet 14 of 19

PA	V	IT	FN	15

The following pay items are established:

PAY	<u>u</u>	ITEM CODE			
SWM Basin Excavation			m ³	Cu. Yds.	27545
SWM Drainage Structur	SWM Drainage Structure (SWM-1)			Lin. Ft.	27550
SWM Riser Pipe	900 mm	(36'')	m	Lin. Ft.	27560
SWM Riser Pipe	1050 mm	(42")	m	Lin. Ft.	27562
SWM Riser Pipe	1200 mm	(48")	m	Lin. Ft.	27564
SWM Riser Pipe	1350 mm	(54'')	m	Lin. Ft.	27566
SWM Riser Pipe	1500 mm	(60")	m	Lin. Ft.	27568
SWM Dam: Conc. Cl. A3 Misc. Reinf. Steel			m³ kg	Cu. Yds. Lbs.	00525 00540

INSERTABLE SHEETS

The following Insertable Sheets are available in the Insertable Sheet Directory for inclusion in Imperial plan assemblies:

- SWM Details SDSD # 2209 (See attached)
- SWM Drainage Structure (SWM-1) SDSD # 2216 (See attached)
- SWM Riser Pipe SDSD # 2216-A (See attached)

Structional & Informational Mericiandum

61 30	Sheet 15			
195.3	(a) 66-a7			
mubne	annial Menor	ismioini	29 IRUO	ารถกราย

(0)/			(IMPERIAL)		
	C.Y.	•	STORMWATER MANAGEMENT BASIN EXCAVATION		
	Lin. Ft.		STORMWATER MANAGEMENT DRAINAGE STRUCTURE SWM-1		
		36"			IANAC
		42"	STORMWA'TER MANAGEMENT RISER PIPE		EMEN
	Lin. Ft.	## ## ## ## ## ## ## ## ## ## ## ## ##			T CON
		54"			TROL S
		60"			STORMWATER MANAGEMENT CONTROL SUMMARY
	C.Y.	N. S. S. S. S. S. S. S. S. S. S. S. S. S.			Y
	Lbs.	50000			
-	Tons.	,	DRY RIP RAP CLASS		-

TOTAL			LCATION			
	m3	STORMWATIER MANAGEMENT BASIN EXCAVATION				S
	meters		STORMWATER MANAGEMENT DRAINAGE STRUCTURE SWM-1			STORMWATER MANAGEMENT CONTROL SHAMARY
		# 000				ANA
		1050 m				FMEN
	meters	1200 m	2503	STOKMWATTER MANACIEMENT RISER PIPE		
	3	1350 m	i n	ATER MENT		TROI C
		1500 mm			MVIMIMIO	INANA A D
	m³	. 9 100000	CLASS	STORMWATER MANAGEMENT DAM	-	<
	kg		REINF.			
	Metric Tons		RIP RAP CLASS	DRY .		

SAMPLE SUMMARY

Instructional & Informational Memorandum LD-99 (D) 195.3 Sheet 16 of 19

SPECIAL PROVISION SECTIONS 302 AND 303

The current Special Provision/Copied Note for measurement and payment for stormwater management items is accessible through the Internet at http://www.vdot.state.va.us. The path is "Opportunities Network", "Construction and Maintenance Contracting Opportunities", "Resources", "Road and Bridge Specifications". Win Zip is available from this web site to enable viewing of the information. Questions pertaining to the web site may be addressed to the Construction Division (Ms. Mary Roane) at (804) 786-2124. Questions concerning the Special Provisions/Copied Notes may be addressed to Ms. Norma Gilbert at (804) 786-2356. Please note the effective advertisement date for these provisions.

61.

Ħ AND COLLAR. CAST-IN-PLACE STORMWATER MANAGEMENT DRAINAGE STRUCTURE (SWM-1) 84 PLAN VIEW 3. 4. 11 Jeni Milis administrations PLAN YEW 11 9 400 FWB 10.75 TANK 1 žģ. Democi of This of the City of Colors MC SID D. SECTION B-B CAST-IN-PLACE A-Y NOILCES MIVE SE HEREOCKI PER FOOT OF ADMITIONAL SEPTIM THE REJUST BY TOST BY LOTTING PROFES 11 FRONT VIEW F. 11 2.27 1.425 0 2.621 2.017 3.03 DETAIL A DETAL A Alline Blira-MINE S WINDS 1007:500 7 7. St 10.0 o 11 100 C 7.4 11 B JAT30 PRECAST STORMWATER MANAGEMENT DRAINAGE STRUCTURE (SWM-1) PLAN VEW 831 3mm .0.0 SIDE VIEW 11! TOP CONCRETE COND THE COMMENS 語 ğ × 2 CLASS AS REPORT TO BE PASSE A). FOR METALS ON HETAL PLATE AND SCROOL RICK SEE SPECIAL DESCRIP LANK MEGNE OF STRUCTURE IN ALKE MIN 4" HEN HARRAS AND THAKK HOW FOR THE SAY I PROPERTY AS FROM HARRAS OF WATER OUTSILE SAYES AND SECOND HARRAS OF WATER SAYES. STRATURE OF THE PROCESS OF CAST OF PLACE FOR DETAILS AND SHOWN SEE STANDARD I GIT DE CL.) NOTES: METP HOLES SHALL HOT BE PROVIDED, ANY LIFT HOLES SHALL BE 200 SICE, AND TO BE PROMISED STATE ACTION OF STRUCTURE OF A OF CONTROL STATE WILLIAMS SELECTION STATE WILLIAMS SELECTION STATE WILLIAMS ž 11 FRONT VEW ì * COVER DETAIL ١٥٥ MEN DECEMBER THE MAN PROPERTY OF THE PARTY O 11 S. - PAICE DURL'ST COLLAR & GRAIL

NOTE: THIS IS A <u>SAMPLE</u> INSERTABLE SHEET.
FOR A CURRENT VERSION, ACCESS THE CADD INSERTABLE SHEET DIRECTORY.

Speed 18 of 1997.3

Speed 18 of 1993.3

2

CADD INSERTABLE SHEET DIRECTORY.

1998 STATE SWM REGULATIONS & 1999 SWM HANDBOOK

- BMP requirements for quality control are "Technology Based" and the type of BMP is determined by the percent of impervious area within the site (or Right of Way) per outfall. SEE TABLE I
- 2. BMP requirements for flooding or quantity control are set by the Erosion and Sediment Control Regulations Minimum Standard 19 for adequate receiving channels.
- Flood control for the 1 year storm in lieu of the 2 year storm may be needed if there is existing or anticipated erosion downstream.
 SEE 4VAC 3-20-81 AND PAGES 5-38 THRU 5-41
- 4. Extended Detention Basins and Extended Detention Basins Enhanced require a Water Quality Volume (WQV) of 2 x the standard WQV or 1" of Runoff from the new impervious area.
- 5. Extended Detention Basins and Extended Detention Basins Enhanced require a 30 hour drawdown time for the required WQV. The 3" minimum size water quality orifice has been eliminated. The calculation procedure for drawdown time and orifice sizing is shown on PAGES 5-33 THRU 5-38 and the attached example problem.
- 6. Sediment Forebays should be used on Extended Detention Basins and Extended Detention Basins Enhanced with the volume set as 0.1" 0.25" x the new impervious area or 10% of the required detention volume. SEE DETAILS PAGE 3.04-6. The stabilized overflow spillway is preferred as rip rap rather than concrete.
- Suggested details for the Extended Detention Basin are shown on PAGES 3.07-4 AND 3.07 The rip rap lined low flow channel thru the basin is not recommended by VDOT due to maintenance concerns.
 - Suggested details for the Extended Detention Basin Enhanced are shown on PAGES 3.07-6
 AND 3.07-7. The geometric design will probably need to be more symmetrical than shown in order to construct the basin to the dimensions needed.
- 9. The SWM Handbook shows details of dam design and culvert installation within the dam as based upon major or high dams with permanent pools. The dams for SWM basins by VDOT are usually less than about 8' high and without permanent pools. VDOT is developing dam design details similar to those shown in the SWM Handbook that are specifically intended for use in shallow SWM basins that are constructed and maintained by VDOT.

EXEMPTIONS

Linear development (highway) projects are exempt from the SWM REGULATIONS (not the E&S Regulations) provided that:

- (1) Less than one acre of new impervious area will be added per outfall and
- (2) There will be insignificant increases in peak flow rates and
- (3) There are no existing or anticipated flooding or erosion problems downstream.

Linear development projects are not exempt from the E&S REGULATIONS and must meet Minimum Standard 19 for Adequate Receiving Channels.

Table 1*

Water Quality BMP	Target Phosphorus Removal Efficiency	Percent Impervious Cover
Vegezeted filter strip	10%	16-21%
G:21sed s=चीe	15%	
Constructed wedlends	30%	
Extended detention (2 x WQ Vol)	35%	22 -37%
Retendon basin ! (3 x WQ Vol)	40%	
Bioretention basin	50%	
Bioretendon filter	50%	•
Extended detention-enhanced	50%	33 -66%
Retention basin II (4 x WQ Val)	50%	
Infiltration (I x WQ Vol)	50%	
Sand filter	63%	
imfilmation (2 x WQ Vol)	65%	67 -100%
Resertion basin III (4 x WQ Vol	65%	
भरीये ब्रद्भवर्तात वेस्त्रदये)	•	

^{*} Innovative or alternate BMPs not included in this table may be allowed at the discretion of the local program administrator or the Department. Innovative or alternate BMPs not included in this table which target appropriate nonpoint source pollution other than phosphorous may be allowed at the discretion of the local program administrator or the Department.

Percent Impervious Cover: New impervious area within the site or Right of Way per outfall.

EXEMPTIONS

Linear development (highway) projects are exempt from the STORMWATER MANAGEMENT REGULATIONS provided that: (1) less than one acre of new impervious area will be added per outfall; (2) there will be insignificant increases in peak flow rates and; (3) there are no existing or anticipated flooding or erosion problems downstream.

Linear development projects are not exempted from the EROSION AND SEDIMENT CONTROL REGULATIONS and must meet Minimum Standard #19 for Adequate Receiving Channels.

EXAMPLE PROBLEM - WQV, DRAWDOWN TIME & ORIFICE SIZING

For Compliance With 1998 State SWM Regs. & Handbook

- .. WATER QUALITY VOLUME (WQV)

Assume basin must meet 1998 State SWM Regulations and basin must be an <u>EXTENDED DETENTION BASIN</u>.

WQV is defined as 1/2" of RUNOFF from the new impervious area.

The <u>REQUIRED WOV</u> for an Extended Detention Basin = 2 x WQV New Impervious Area = 2.4 acres WQV = 1/2" x 2.4 ac. = 4360 cubic feet <u>REQUIRED WOV</u> for Extended Detention Basin = 4360 x 2 = 8720 cf

NOTE: To achieve the REQUIRED WQV of 8720 cf, the 24" orifice in the riser will need to be raised from elev. 202.9 to an invert of 203.3. This will require that all of the original routing computations for the various hydrographs will have to be revised.

DETERMINE ORIFICE SIZE (for required 30 hour drawdown time)

METHOD #1 - MAXIMUM HYDRAULIC HEAD

From instructions in the 1998 Draft of the DCR Handbook for SWM on pages 5-34 and 5-35:

Find ponded elevation for Reg'd. WQV: From stage vs elevation table @elev 203.3 Vol.= $8720\pm cf$

Max. head = 203.3 - 202.2 = 1.1'
 Note: Actual h on orifice is to center of orifice
 Since size of orifice is unknown, use 1.1' which is probably
only about 1" too high and is insignificant.

Q av'g. = $\frac{8720 \text{ cf}}{(30 \text{ hr.})(3600 \text{ sec./hr.})} = 0.081 \text{ cfs}$

 $Q \max = 0.081 \times 2 = 0.16 \text{ cfs}$

Orifice size: $a = \frac{Q}{C\sqrt{2gn}} = \frac{0.16}{0.5\sqrt{2\times32.2\times1.1}} = 0.032 \text{ sf.}$

From Table: Use 2 1/2" ORIFICE

(continued)

DRAWDOWN TIME

METHOD #2 Routing of WQV

Comments: The routing of WQV thru a basin may not be possible with many routing software programs. The problem can be due to the need of inputing a HYG for a minimum of about 30 hours with the last 29.5 hours having 0.0 inflow. The problem could also be due to the orifice size not being acceptable for something as small as a 2 1/2" orifice.

To develop a hydrograph for the WQV (following the example in the SWM Handbook) you need only to calculate a HYG for the new impervious area and use the time of concentration pertinent to that impervious areas and its proximity to the basin. Assuming that the basin is to be an extended detention basin, the required WQV will be 2 x WQV which is 1" of runoff from the new impervious area. The TR-55 Hydrograph method will probably be the easiest HYG to provide 1" of runoff. The process would involve using Rainfall (RF) of 1.2" and a CN of 98 for the impervious area. This will produce 1" of runoff from the (new) impervious area.

ALTERNATIVE METHOD OF ROUTING WQV TO FIND DRAWDOWN TIME

The SWM Handbook defines the drawdown time as from the time the WQV (elevation) is reached until the basin is emptied. This is based upon a storm producing only the amount of runoff required for the WQV - For an extended detention basin - 1".

The normally required routing of the 2 year storm can also be used for drawdown time with some slight adjustment providing that the routing software will accommodate such. The receding limb of the inflow hydrograph will need to be adjusted to show either 0.0 or 0.01 inflow up to a time of about 30 hours and the software will need to calculate small orifices such as 2". By this method the drawdown time for WQV is actually from the time that the basin recedes to the WQV elevation until the basin is empty. For practical purposes, if the routing shows the basin is not empty at 30 hours, this is close enough.

Please note figure 2-1 from the SWM Handbook that shows the relationship of detention time to * efficiency of pollutant removal. The * efficiency does not increase significantly beyond 6 hours. Therefore the orifice size calculations using method #1 should be sufficient. This is especially true considering the probability that small orifices will probably stay clogged.

REVISED AREA "G"

Combined Stormwater Management &
Temporary Sediment Basin Calculations

FLOW ANALYSIS FOR PRE-DEVELOPMENT AND POST-DEVELOPMENT CONDITIONS

PRE-DEVELOPMENT CONDITION

_	Subarea Surface	Area (Ac.)	C Factor	C * A
1.	Average Grass	25.70	0.45	11.57
2.				
3.				
_	Total Area:	25.70	Total C*A:	11.57

Composite C Factor =

0.45

Time of Concentration

2000 ' Overland Flow @

4.00

%

21.3

min

Peak Q for multi-year storm

Year	Area Ac.	Cf	С	Tc min	<i>i</i> in/hr	Q cfs
2	25.70	1.00	0.45	21	3.27	37.9
10	25.70	1.00	0.45	21	4.47	51.7
25	25.70	1.10	0.45	21	5.22	66.3
100	25.70	1.25	0.45	21	6.35	91.8

POST-DEVELOPMENT CONDITION

Subarea Surface	Area (Ac.)	C Factor	C * A
Average Grass	31.87	0.35	11.15
2. Paved	13.24	0.90	11.92
Developed	1.59	0.55	0.87
Total Area:	46.70	Total C*A	23.95

Composite C Factor =

0.51

Time of Concentration

480 ' Overland Flow @ 4.00 % = 7.8 min 1900 ' Channel Flow @ 2.00 fps = 15.8 min

Peak Q for multi-year storm

Year	Area	Cf	С	Тс	i	Q
	Ac.			min 🗸	in/hr	cfs
2	46.70	1.00	0.51	24	3.08	73.7
10	46.70	1.00	0.51	24	4.23	101.2
25	46.70	1.10	0.51	24	4.94	130.1
100	46.70	1.25	0.51	24	6.03	180.4

POND-2 Version: 5.17

S/N:

0199-047-F03-C501-RW204 AREA G S.W.M. POND - RTE 199 STA. 285 VOLUME vs ELEVATION TABLE

CALCULATED 02-12-1994 22:37:55 DISK FILE: C:\BANDAK\G-199 .VOL

Planimeter scale: 1 inch = 1 ft.

				*	
Elevation (ft)	Planimeter (sq.in.)	Area (sq.ft)	A1+A2+sqr(A1*A2) (sq.ft)	Volume (cubic-ft)	Volume Sum (cubic-ft)
47.00 47.50 48.00 49.00 50.00 51.00 52.00 53.00 54.00 55.00	0.00 3,200.00 15,210.00 31,460.00 32,920.00 34,470.00 36,020.00 37,560.00 39,100.00 40,815.00	0 3,200 15,210 31,460 32,920 34,470 36,020 37,560 39,100 40,815	0 3,200 25,387 68,545 96,562 101,076 105,726 110,362 114,982 119,863	0 533 4,231 22,848 32,187 33,692 35,242 36,787 38,327 39,954	0 533 4,764 27,613 59,800 93,492 128,734 165,521 203,849 243,803
56.00	42,530.00	42,530	125,009	41,670	285,473

IA = (sq.rt(Area1) + ((Ei-E1)/(E2-E1))*(sq.rt(Area2)-sq.rt(Area1)))

* Incremental volume computed by the Conic Method for Reservoir Volumes.

Volume = (1/3) * (EL2-EL1) * (Area1 + Area2 + sq.rt.(Area1*Area2))

where: EL1, EL2 = Lower and upper elevations of the increment
Areal,Area2 = Areas computed for EL1, EL2, respectively
Volume = Incremental volume between EL1 and EL2

F			T	
MMM ARCHITECTS + ENC	DESIGN GROUP GINEERS + PLANNERS	DESIGN BUDGET PRELIMINARY ANALYSIS FINAL OTHER	SHEET NO:	
PROJECT NAME:	ROUTE 19	19	DEPARTMENT:	
PROJECT PART:)RAINAGE	DESIGN	SHEET NO: COMPUTED BY:	OF: DATE:
0050 0040004		CONTROL & S.W.M.	CHECKED BY:	4/29/94 DATE:
[CONTROL & 5.W.11.		<u></u>
TEM	190RARY SED	IMENT BASIN CALCULATIONS		
46.	70 AC. DRAIN	"AGE AREA X 67 CY/ACRE "WET STORAGE" "DRY STORAGE" TOTAL STORAGE = 168, 966 C.F. =	= 3,129	Cy.
WSE	E FOR TOTAL	STORAGE - 168,966 C.F. = 53.09 S.	4y 53.10	
WSE	FOR WET	STORAGE - 84, 483 C.F. = 50.73 St	ty 50.75	<u>-</u>
LEN	GTH TO WIL	OTH RATIO		
	= 265'	AREA OF WET STURAGE - 34,08	O S.F.	
We	A/L = 1	29'		
<i>-/</i>	Ne = 265/	129 = 2.05 -> 2.05 >2 : N	DBAFFLES EQUIRED	·
A\ A 7	I EMERGENCY LEAST 1.0'	SPILLWAY WILL BE USED - 25-YR WSE BELOW TOP OF EMBANKHENT WICH IS 54.1	SHOULD BE	<u>-</u>
DE	SIGN 25-YR /	FLOW = 66.3 CFS 38 CFS RISER CO.	NTRIBUTION	
A)	VD 28.0 CFS A HVES WSE =	VEIR CONTRIBUTION; ZB CES WITH 14 BOTTO 54.10+.9 = 55.00 WHICH IS 1.0' BELOW.	DM WEIR 56.00	
<u> </u>	ERGENCY SPIL	-L WAY		
ζγ. 24	e= 66.3-37.	9 = 28 CFS FROM 2-YR 8 25-YR 0	ESIGN PLOW	5
100	o EVENT -> RK	2) WILL PRODUCE WEE OF 55,20 -> SET BOD SER CARRIES 38 GS & WEIR CARRIES 540	70M @ 54.	10
		14', HP = 1.4' = 0 = 59 CFS	- / -5	
DIA	METER OF A	DEWATERING ORIFICE! (6 HR DRAWDOWN	MIN 3"0.	ORIFICE
DR	Y STORAGE.	= 84,483 C.F.	, , , , , , , , , , , , , , , , , , ,	
			3.10-50.75=	2.35
A	= 2 [29 h/z]"	$\frac{391}{6664.32 \times 2.35/2} = 0.750$	S.F.	
		$4/\pi)^{1/2} = .98' = 11.7''$		
* * *	HOLD 11"	DRIFICE & 12" P TUBE		

MMM DESIGN GROUP ARCHITECTS + ENGINEERS + PLANNERS	DESIGN ANALYSIS	BUDGET PRELIMINARY FINAL OTHER	SHEET NO:	
PROJECT NAME: ROUTE 19	9		DEPARTMENT:C	
PROJECT PART: DRAINAGE	DESIGN		COMPUTED BY:	OF: DATE:
SPEC. DIVISION: EROSION	CONTROL & S.W. M	1.	CHECKED BY	4/29/90 DATE:
TEMPORARY SEDI	MENT BASIN CALCUL	ATIONS (CONTIN	NUED)	
RISER SIZE 2-YR OUTFALL	DESIGN Q = 37.9 PRICER , H = 1.10 '	CFS		-54 20
BARREL SIZE	, ,			-07.20
	00 = 9.0'; USE TO PERM	36 "CONC. EFFLUE ACCOMODATE 25-YK IANENT CTORM WATE	ENT BARRE PLOW FRO R MGM'T F	EL M FAGLITY.
42" RISER -	-> 10.01 # -> 3AGE 16; #8 REJAK ARS Y= 53.10 EEP COLLAR 7'X 7' 2' -32' Z 53.10	10.01> 9.62 ; TOP THICKNESS = - 47.00 = 6.10	12 g. FLA	, 9 KMENT
	V 50.75	WV. = 47.00	7'X7' ANTI COXLAR 36" O RCP ~	I-SEEP

.

MM ARCHITECTS	DESIGN GROUP S+ENGINEERS+PLANNERS	DESIGN BUDGET PRELIMINARY PRELIMINARY OTHER OTHER	SHEET NO:	
PROJECT NAME:	ROUTE 199		DEPARTMENT:	
PROJECT PART:	DRAINAGE	DESIGN	COMPUTED BY:	OF: DATE: 4/29/94
SPEC. DIVISION:	EROSION C	ONTROL & S.W. M.	CHECKED BY:	0ATE:

STORMWATER MANAGEMENT OUTFALL STRUCTURE CALCULATIONS

ORIFICE EQ. $Q = Cd A \sqrt{zgh}$; Cd = 0.61, g = 32.16RECTANGILAR WEIR: $Q = 3.367LH^{3/2}$ 90° V-NOTCH WEIR: $Q = 2.54 h^{5/2}$

WATER QUALITY VOLUME (WOV):

1/2" (1/12) (22.32 AC.) (43,560) = 40,511 C.F. RELEASED OVER 30 HRS. Q = 40,511/108000 = 0.375 CFS

WSE OF WQV = 49.40 $h_{ORIFICE} = 49.40 - 47.00 = 2.40$ $A = \frac{.375}{(64.32 \times 2.40)^{12}} \frac{1}{(.61)} = .049$ S.F.

DIAMETER = $2(A/\pi)^{1/2} = .25' = 3'' \phi$ ORIFICE

USE 3" Q ORIFICE

Project: 0199-047-F03-C501-RW204

Job#: 6429.00

Date:

05/03/94

User:

IZB

STORMWATER MANAGEMENT OUTFALL STRUCTURE CALCULATIONS

						IFALL				LCULA	TIONS
		CIRCULAR		TANGULAR	_	DI-7 w/ 3	' X 3.5' GRAT	Ę	TOTAL	TOTAL	
	DIA.(in)	3.00	WIDTH (ft)	3.00					. Q	Q	
WSE	INV. EL.(ft)	47.00	HEIGHT(ft)	1.00					W/ NON	WITH	REMARKS
			INV. EL.(ft)	49.40		RIM EL. (ft)	53.00		1	CLOGGED	ļ
		r · · · · · · · · · · · · · · · · · · ·				.			ORIFICE	ORIFICE	
FEET	HEAD (ft)	Q(CFS)	HEAD (ft)	Q(CFS)	<u> </u>	HEAD (ft)	Q(CFS)	L	CFS	CFS	
47.00											
47.50	0.50	0.17							0.17		
48.00	1.00	0.24							0.24		
48.50	1.50	0.29							0.29		
49.00	2.00	0.34					<u> </u>		0.34		
49.40	2.40	0.37							0.37		
49.50	2.50	0.38	0.10	0.96					1.34	0.96	
50.00	3.00	0.42	0.60	14.08					14.50	14.08	
50.50	3.50	0.45	1.10	34.11	*				34.55	34.11	
51.00	4.00	0.48	1.60	46.18	*				46.66	46.18	
51.50	4.50	0.51	2.10	55.69	*				56.20	55.69	
52.00	5.00	0.54	2.60	63.81	*				64.34	63.81	
52.50	5.50	0.56	3.10	71.00	*				71.56	71.00	
53.00	6.00	0.59	3.60	77.52	*				78.11	77.52	
53.50	6.50	0.61	4.10	83.54	*	0.50	10.72		94.88	94.26	
54.00	7.00	0.64	4.60	89.15	*	1.00	32.45	*	122.24	121.60	
54.50	7.50	0.66	5.10	94.43	*	1.50	39.58	*	134.67	134.01	
55.00	8.00	0.68	5.60	99.43	*	2.00	45.57	*	145.68	145.01	
55.50	8.50	0.70	6.10	104.19	*	2.50	50.84	*	155.73	155.03	
56.00	9.00	0.72	6.60	108.75	*	3.00	55.59	*	165.05	164.33	
					\Box						
					\perp						
					\bot						
					\perp						
								\Box			
					\perp						
					\perp						
								\Box			
	ndianta a O										

Indicates Orifice Flow

E:\QPRO\0642900\OUTLET.WB1

MODIFIED RATIONAL METHOD ---- Graphical Summary for Maximum Required Storage ----

First peak outflow point assumed to occur at inflow recession leg.

```
RETURN FREQUENCY: 2 yr | Allowable Outflow: 37.90 cfs 'C' Adjustment: 1.000 | Required Storage: 55,573 cu.f
                                                      55,573 cu.ft. *
      Peak Inflow: 51.07 cfs
                                  Inflow .HYD stored: G-2 .HYD
                                  ********
                  Td = 43 minutes
                                                   Return Freq:
    ----- Approx. Duration for Max. Storage ----/ C adj.factor: 1.00
                        24.00 minutes
                   Tc=
                  I =
                        3.044 in/hr
                                                   Area (ac):
                                                                46.70
                  Q =
                        72.89 cfs
                                                   Weighted C:
                                                                 0.51
                                                   Adjusted C:
                                                                 0.51
F
L
                                Required Storage
0
                                55,573 cu.ft.
                                                   Td=
                                                           43 minutes
W
                                                         2.133 in/hr
                                                   I =
                Q =
                                                         51.07 cfs
C
f
                                                        Q= 37.90 cfs
                                                     x (Allow.Outflow)
                                   NOT TO SCALE
                                                        х
    0
                                                  49.19 minutes
```

MODIFIED RATIONAL METHOD ---- Graphical Summary for Maximum Required Storage ----

First peak outflow point assumed to occur at inflow recession leg.

```
********
      RETURN FREQUENCY: 10 yr | Allowable Outflow: 51.70 cfs * 'C' Adjustment: 1.000 | Required Storage: 82,410 cu.ft. *
      Peak Inflow: 70.16 cfs
                                Inflow .HYD stored: G-10
                  Td = 45 minutes
                                                   Return Freq: 10 yr
    ----- Approx. Duration for Max. Storage ----/ C adj.factor: 1.00
                   Tc=
                        24.00 minutes
                       4.184 in/hr
                   I =
                                                    Area (ac):
                                                                 46.70
                   Q = 100.19 cfs
                                                    Weighted C:
                                                                 0.51
                                                    Adjusted C:
                                                                  0.51
F
L
                                 Required Storage
0
                                 82,410 cu.ft.
                                                    Td=
                                                            45 minutes
W
                                                    I =
                                                         2.930 in/hr
                 Q =
                                                         70.16 cfs
C
£
              x
s
                                                         Q= 51.70 cfs
                                                      x (Allow.Outflow)
                                          0
                                   NOT TO SCALE
                                                         x
                                                   51.31 minutes
```

MODIFIED RATIONAL METHOD ---- Graphical Summary for Maximum Required Storage ----

First peak outflow point assumed to occur at inflow recession leg.

```
RETURN FREQUENCY: 25 yr | Allowable Outflow: 66.30 cfs * 'C' Adjustment: 1.100 | Required Storage: 107,756 cu.ft. *
                                 Inflow .HYD stored: G-25
       Peak Inflow: 90.74 cfs
                  Td = 45 minutes
                                                     Return Freq: 25 yr
    ------ Approx. Duration for Max. Storage -----/ C adj.factor: 1.10
                         24.00 minutes
                   Tc=
                   I =
                        4.892 in/hr
                                                      Area (ac):
                                                                   46.70
                   Q = 128.85 cfs
                                                      Weighted C:
                                                                    0.51
                                                      Adjusted C:
                                                                    0.56
F
L
                                  Required Storage
0
                               -- 107,756 cu.ft.
                                                      Td=
                                                             45 minutes
W
                                                      I =
                                                           3.445 in/hr
                 Q =
                                                           90.74 cfs
C
£
                                                      x
                                                           Q= 66.30 cfs
                                                        x (Allow.Outflow)
                                            0
                                     NOT TO SCALE
                                                           x
                                                     51.46 minutes
```

MODIFIED RATIONAL METHOD ---- Graphical Summary for Maximum Required Storage ----

First peak outflow point assumed to occur at inflow recession leg.

```
******
      RETURN FREQUENCY: 100 yr
                               | Allowable Outflow: 91.80 cfs
      'C' Adjustment: 1.250
                               Required Storage: 152,223 cu.ft. *
      Peak Inflow: 126.76 cfs
                              Inflow .HYD stored: G-100
                 Td = 45 minutes
                                                Return Freq: 100 yr
    ------ Approx. Duration for Max. Storage -----/ C adj.factor: 1.25
                 Tc=
                       24.00 minutes
                 I =
                      5.968 in/hr
                                                Area (ac):
                                                            46.70
                 Q = 178.63 cfs
                                                            0.51
                                                Weighted C:
                                                Adjusted C:
                                                             0.64
F
L
                              Required Storage
0
                            -- 152,223 cu.ft.
                                                Td=
                                                        45 minutes
W
                                                I =
                                                     4.235 in/hr
               Q = 126.76 \text{ cfs}
C
f
             x
                                                x
s
                                                     Q= 91.80 cfs
                                                 0
                                       0
                                                  x (Allow.Outflow)
                                 NOT TO SCALE
                                                     x
    0
                                               51.62 minutes
```

> ROUTE 199 - AREA G 0199-047-F03-C501-RW204 S.W.M. POND RTE 199 STA. 285

**** Modified Rational Hydrograph ****

Weighted C = 0.513 Area 46.700 acres Tc = 24.00 minutes

Adjusted C = 0.513 Td= 43.00 min. I = 2.13 in/hr Qp= 51.07 cfs

RETURN FREQUENCY: 2 year storm Adj.factor = 1.00

Output file: G-2 .HYD

HYDROGRAPH FOR MAXIMUM STORAGE For the 2 Year Storm

Time Minutes	Time on	Time increm				row.
4.00 39.00	_ = = = = = =	L9.15 29.79 18.94 38.30	40.43	51.07 17.02	51.07	51.07

> ROUTE 199 - AREA G 0199-047-F03-C501-RW204 S.W.M. POND RTE 199 STA. 285

**** Modified Rational Hydrograph *****

Weighted C = 0.513Area = 46.700 acres Tc = 24.00 minutes

Adjusted C = 0.513Td= 45.00 min. I= 2.93 in/hr Qp= 70.16 cfs

RETURN FREQUENCY: 10 year storm Adj.factor = 1.00

Output file: G-10 .HYD

HYDROGRAPH FOR MAXIMUM STORAGE For the 10 Year Storm

Time Minutes	Time on left	Time increm represents				row.
4.00	11.69 26.31 70.16 70.16	40.93 58.47	55.54 43.85	70.16 29.23	70.16 14.62	70.16

Quick TR-55 Ver.5.46 S/N:

Executed: 22:37:19 02-12-1994

ROUTE 199 - AREA G 0199-047-F03-C501-RW204 S.W.M. POND RTE 199 STA. 285

**** Modified Rational Hydrograph *****

13 Area= 46.700 acres Tc = 24.00 minutes Weighted C = 0.513

Adjusted C = 0.564Td= 45.00 min. I= 3.44 in/hr Qp= 90.74 cfs

RETURN FREQUENCY: 25 year storm Adj.factor = 1.10

Output file: G-25 . HYD

HYDROGRAPH FOR MAXIMUM STORAGE For the 25 Year Storm

Time		Time increm	ent = 5.00	Minutes	
Minutes	Time on 1	left represents	time for f	irst Q in	each row.
4.00		1.03 52.93	71.84	90.74 9	90.74 90.74
39.00	90.74 90	75.62	56.71	37.81 1	18.90 0.00

> ROUTE 199 - AREA G 0199-047-F03-C501-RW204 S.W.M. POND RTE 199 STA. 285

**** Modified Rational Hydrograph *****

Area = 46.700 acres Tc = 24.00 minutes Weighted C = 0.513

Adjusted C = 0.641Td= 45.00 min. I= 4.23 in/hr Qp= 126.76 cfs

RETURN FREQUENCY: 100 year storm Adj.factor = 1.25

Output file: G-100 .HYD

HYDROGRAPH FOR MAXIMUM STORAGE For the 100 Year Storm

Time Minutes	Time	Time increm represents				row.
4.00 39.00		 73.94 105.63	100.35 79.22	126.76 52.82	126.76 26.41	126.76

> ROUTE 199 - AREA G 0199-047-F03-C501-RW204 S.W.M. POND RTE 199 STA. 285

* * * * * * SUMMARY OF RATIONAL METHOD PEAK DISCHARGES * * * * * *

Q = adj * C * I * A
Where: Q=cfs, C=Weighted Runoff Coefficient, I=in/hour, A=acres
adj = 'C' adjustment factor for each return frequency

RETURN FREQUENCY = 2 years
'C' adjustment, k = 1
Adj. 'C' = Wtd.'C' x 1

				:	==:		=======	=======	=======
Subarea Descr.	Runoff 'C'	Area acres	Tc (min)	Wtd. 'C'		Adj. 'C'	I in/hr	Total acres	Peak Q (cfs)
GRASS PAVED DEVELOPED	0.350 0.900 0.550	31.87 13.24 1.59							
			24.00	0.513		0.513	3.044	46.70	72.89

> ROUTE 199 - AREA G 0199-047-F03-C501-RW204 S.W.M. POND RTE 199 STA. 285

* * * * * * SUMMARY OF RATIONAL METHOD PEAK DISCHARGES * * * * * *

Q = adj * C * I * A
Where: Q=cfs, C=Weighted Runoff Coefficient, I=in/hour, A=acres
adj = 'C' adjustment factor for each return frequency

RETURN FREQUENCY = 10 years
'C' adjustment, k = 1
Adj. 'C' = Wtd.'C' x 1

Subarea Descr.	Runoff 'C'	Area acres	Tc (min)	Wtd.	==	Adj. 'C'	I in/hr	Total acres	Peak Q (cfs)
GRASS PAVED DEVELOPED	0.350 0.900 0.550	31.87 13.24 1.59		·					
			24.00	0.513		0.513	4.184	46.70	100.19

> ROUTE 199 - AREA G 0199-047-F03-C501-RW204 S.W.M. POND RTE 199 STA. 285

* * * * * * SUMMARY OF RATIONAL METHOD PEAK DISCHARGES * * * * * *

Q = adj * C * I * A
Where: Q=cfs, C=Weighted Runoff Coefficient, I=in/hour, A=acres
adj = 'C' adjustment factor for each return frequency

RETURN FREQUENCY = 25 years 'C' adjustment, k = 1.1 Adj. 'C' = Wtd.'C' x 1.1

Subarea Descr.	Runoff	Area acres	Tc (min)	Wtd.	===:	 Adj.	======================================	Total	Peak Q
			('C'	in/hr	acres	(cfs)
GRASS PAVED DEVELOPED	0.350 0.900 0.550	31.87 13.24 1.59							
			24.00	0.513		564	4.892	46.70	128.85

> ROUTE 199 - AREA G 0199-047-F03-C501-RW204 S.W.M. POND RTE 199 STA. 285

* * * * * * SUMMARY OF RATIONAL METHOD PEAK DISCHARGES * * * * *

Q = adj * C * I * A
Where: Q=cfs, C=Weighted Runoff Coefficient, I=in/hour, A=acres
adj = 'C' adjustment factor for each return frequency

RETURN FREQUENCY = 100 years 'C' adjustment, k = 1.25 Adj. 'C' = Wtd.'C' x 1.25

Subarea Descr.	Runoff 'C'	Area acres	Tc (min)	Wtd. 'C'	Adj. 'C'	I in/hr	Total acres	Peak Q (cfs)
GRASS PAVED DEVELOPED	0.350 0.900 0.550	31.87 13.24 1.59						
			24.00	0.513	0.641	5.968	46.70	178.63

First peak outflow point assumed to occur at inflow recession leg.

ROUTE 199 - AREA G 0199-047-F03-C501-RW204 S.W.M. POND RTE 199 STA. 285

:::::::	A:::::::::		46.70 ac		:::::::::	Tc = 24.00	
Frequency (years) (cu.ft.)	Adjusted 'C'	Duration minutes	Intens. in/hr	Qpeak cfs	Allowable cfs	Inflow (cu.ft.)	Storage
2	0.513	43	2.133	51.07	37.90	131,752	55,573
10	0.513	45	2.930	70.16	51.70	189,429	82,410
25	0.564	45.	3.445	90.74	66.30	244.997	107,756
100	0.641	45	4.235	126.76	91 80	342 249	152 223

MODIFIED RATIONAL METHOD ---- Summary for Single Storm Frequency ----

First peak outflow point assumed to occur at inflow recession leg.

ROUTE 199 - AREA G 0199-047-F03-C501-RW204 S.W.M. POND RTE 199 STA. 285

RETURN FR	EQUENCY:	2 yr '(C' Adjust	ment = 1	L.000 All	owable Q =	37.90 cfs
Hydrograp	h file dur h file: G-	2 . HYI	כ			Tc = 24.00	
Weighted 'C' (cu.ft.)	Adjusted 'C'	Duration minutes	Intens. in/hr		Qpeak cfs	VOLUI Inflow (cu.ft.)	MES Storage
0.513 0.513 0.513	0.513 0.513 0.513	24 30 40	2.540	46.70	60.82 53.32	109,477 127,962	48,079 55,194
******* 0.513 *****	******** 0.513 *****	********* 43 ******	2.133	******* 46.70 *****	******** 51.07 ******	***** Storage 131,752 ******	Maximum 55,573
0.513 0.513 0.513	0.513 0.513 0.513	50 60 120	1.913 1.600 1.030		45.81 38.31 24.66	,	42,415

MODIFIED RATIONAL METHOD ---- Summary for Single Storm Frequency ----

First peak outflow point assumed to occur at inflow recession leg.

ROUTE 199 - AREA G 0199-047-F03-C501-RW204 S.W.M. POND RTE 199 STA. 285

RETURN FREQUENCY: 10 yr 'C' Adjustment = 1.000 Allowable Q = 51.70 cfs Hydrograph file duration= 45.00 minutes Hydrograph file: G-10 .HYD Tc = 24.00 minutes VOLUMES Weighted Adjusted Duration Intens. Areas Qpeak | Inflow 'C' 'C' minutes in/hr acres cfs | (cu.ft.) Inflow Storage (cu.ft.) -----|-----|-----|

 0.513
 0.513
 24
 4.184
 46.70
 100.19
 144,268
 69,820

 0.513
 0.513
 30
 3.560
 46.70
 85.24
 153,440
 69,686

 0.513
 0.513
 40
 3.140
 46.70
 75.19
 180,450
 81,186

 *********** Storage Maximum 0.513 0.513 45 2.930 46.70 70.16 | 189,429 82,410 ******************
 0.513
 50
 2.720
 46.70
 65.13

 0.513
 60
 2.300
 46.70
 55.07

 0.513
 120
 1.480
 46.70
 35.44
 0.513 65.13 | 195,391 55.07 | 198,265 193,391 80,617 198,265 67,981 0.513 0.513

Qpeak < Qallow

MODIFIED RATIONAL METHOD ---- Summary for Single Storm Frequency ----

First peak outflow point assumed to occur at inflow recession leg.

ROUTE 199 - AREA G 0199-047-F03-C501-RW204 S.W.M. POND RTE 199 STA. 285

RETURN FREQUENCY: 25 yr 'C' Adjustment = 1.100 Allowable Q = 66.30 cfs Hydrograph file duration= 45.00 minutes Hydrograph file: G-25 .HYD Tc = 24.00 minutes VOLUMES Inflow Storage (cu.ft.) (cu.ft.)
 0.513
 0.564
 24
 4.892
 46.70
 128.85
 185,548
 90,076

 0.513
 0.564
 30
 4.180
 46.70
 110.10
 198,178
 90,772

 0.513
 0.564
 40
 3.690
 46.70
 97.19
 233,263
 105,967
 0.513 0.564 45 3.445 46.70 90.74 244,997 107,756 ************************ 50 3.200 46.70 84.29 252,859 105,673 60 2.710 46.70 71.38 256,968 89,892 120 1.750 46.70 46.09 Qpeak < Qallow 0.513 0.564 252,859 105,673 256,968 89,892 0.513 0.564 0.513 0.564

MODIFIED RATIONAL METHOD ---- Summary for Single Storm Frequency ----

First peak outflow point assumed to occur at inflow recession leg.

ROUTE 199 - AREA G 0199-047-F03-C501-RW204 S.W.M. POND RTE 199 STA. 285

RETURN FR	EQUENCY: 1	.00 yr '0	C' Adjust	ment = 1	L.250 All	owable Q =	91.80 cfs
Hydrograp	h file dur h file: G-	100 .HYI)		,	Tc = 24.00	minutes
••••••	• • • • • • • • • •					VOL	
Weighted 'C' (cu.ft.)	Adjusted 'C'	Duration minutes		Areas acres		Inflow (cu.ft.)	Storage
					.	- 	
0.513		24	5.968	46.70	178.63	257,227	125,035
0.513		30	5.120	46.70	153.25	275,846	127,130
0.513	0.641	40	4.530	46.70	135.59	325,413	149,157
******	*****	*****	*****	*****	*****	***** Storag	re Maximum
0.513	0.641	45	4.235	46.70	126.76	342,249	152,223
*****	*****	*****	*****	*****	*****	******	*****
0 513							
0.513	0.641	50	3.940	46.70	117.93	• -	
0.513	0.641	60	3.350		100.27		
0.513	0.641	120	2.160	46.70	64.65	Qpeak <	Qallow

EXECUTED: 02-12-1994 22:38:17

* ROUTE 199 - AREA G *

* 0199-047-F03-C501-RW204 *

* S.W.M. POND RTE 199 STA. 285 *

*

Inflow Hydrograph: C:\BANDAK\G-2 .HYD Rating Table file: C:\BANDAK\G-199 .PND

----INITIAL CONDITIONS---Elevation = 47.00 ft
Outflow = 0.00 cfs
Storage = 0 cu-ft

GIVEN POND DATA

INTERMEDIATE ROUTING COMPUTATIONS

ELEVAT:	ION OUTFLOW (cfs)	STORAGE (cu-ft)		2S/t (cfs)	2S/t + 0 (cfs)
		-	l '		
47.0	0.0	0		0.0	0.0
47.5	50 0.0	533		3.6	3.6
48.0	0.0	4,765		31.8	31.8
48.5	50 0.0	14,157		94.4	94.4
49.0	0.0	27,613		184.1	184.1
49.5	50 1.0	43,524		290.2	291.2
50.0	00 14.1	59,800		398.7	412.8
50.9	50 30.1	76,452	•	509.7	539.8
51.0		93,492		623.3	669.5
51.5	50 55.0	110,919		739.5	794.5
52.0	00 63.8	128,734		858.3	922.1
52.5	50 70.7	146,935		979.6	1050.3
53.0		165,521	1	1103.5	1181.0
53.5	1	184,493	ŀ	1230.0	1329.6
54.0		203,849		1359.0	1480.6
54.5	1	223,612	1	1490.8	1626.3
55.0		243,803	1	1625.4	1778.2
55.5		264,424	1	1762.9	1933.3
56.0	00 190.1	285,473		1903.2	2093.3

Time increment (t) = 5.0 min.

EXECUTED: 02-12-1994 22:38:17

Pond File: C:\BANDAK\G-199 .PND Inflow Hydrograph: C:\BANDAK\G-2 .HYD Outflow Hydrograph: C:\BANDAK\OUT .HYD

INFLOW HYDROGRAPH

ROUTING COMPUTATIONS

Page 2

	TIME	INFLOW	11+12	2S/t - O	2S/t + 0	OUTFLOW	ELEVATION
	(min)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(ft)
	4.0	8.51		0.0	0.0	0.00	47.00
	9.0	19.15	27.7	27.7	27.7	0.00	47.93
	14.0	29.79	48.9	76.6	76.6	0.00	48.36
	19.0	40.43	70.2	146.8	146.8	0.00	48.79
	24.0	51.07	91.5	237.3	238.3	0.51	49.25
	29.0	51.07	102.1	327.0	339.4	6.20	49.70
ļ	34.0	51.07	102.1	396.9	429.2	16.17	50.06
- 1	39.0	51.07	102.1	449.1	499.0	24.96	50.34
- 1	44.0	48.94	100.0	486.6	549.1	31.25	50.54
- 1	49.0	38.30	87.2	505.2	573.8	34.32	50.63
- 1	54.0	27.66	66.0	503.2	571.1	33.99	50.62
- 1	59.0	17.02	44.7	485.6	547.8	31.10	50.53
	64.0	6.38	23.4	456.6	509.0	26.23	50.38
l	69.0	0.00	6.4	422.1	463.0	20.42	50.20

Page 3

POND-2 Version: 5.17 S/N:

EXECUTED: 02-12-1994 22:38:17

************** SUMMARY OF ROUTING COMPUTATIONS *************

Pond File: C:\BANDAK\G-199 .PND Inflow Hydrograph: C:\BANDAK\G-2 .HYD Outflow Hydrograph: C:\BANDAK\OUT .HYD

Starting Pond W.S. Elevation = 47.00 ft

***** Summary of Peak Outflow and Peak Elevation *****

Peak Inflow = 51.07 cfs Peak Outflow = 34.32 cfs Peak Elevation = 50.63 ft

***** Summary of Approximate Peak Storage *****

Initial Storage = 0 cu-ft
Peak Storage From Storm = 80,921 cu-ft
Total Storage in Pond = 80,921 cu-ft

Warning: Inflow hydrograph truncated on left side.

```
POND-2 Version: 5.17 S/N:
                                                            Page 4
      Pond File:
                        C:\BANDAK\G-199
                                         . PND
      Inflow Hydrograph: C:\BANDAK\G-2
                                          . HYD
      Outflow Hydrograph: C:\BANDAK\OUT
                                          .HYD
                                                    EXECUTED: 02-12-1994
      Peak Inflow
                        51.07 cfs
                                                               22:38:17
      Peak Outflow
                        34.32 cfs
                   =
      Peak Elevation =
                        50.63 ft
                                                             Flow (cfs)
      0.0
4.0
9.0
      \mathbf{x}
      x
14.0 -
      x
      х
19.0 - x
      x
24.0 -
29.0 -
            x
                x
34.0 -
                     x
                          х
39.0 -
                             х
                                x
44.0 -
                                     x
49.0 -
                                      х
                                     *x
54.0 -
                                      x
                                    x
59.0 -
                                   x
                                x
64.0 -
                              x
                           x
   TIME
   (min)
    File:
          C:\BANDAK\G-2
                            .HYD
                                  Qmax =
                                           51.1 cfs
          C:\BANDAK\OUT
   File:
                            .HYD
                                           34.3 cfs
                                  Qmax =
```

EXECUTED: 02-12-1994 22:38:57

Inflow Hydrograph: C:\BANDAK\G-10 .HYD Rating Table file: C:\BANDAK\G-199 .PND

----INITIAL CONDITIONS---Elevation = 47.00 ft
Outflow = 0.00 cfs
Storage = 0 cu-ft

GIVEN POND DATA

INTERMEDIATE ROUTING COMPUTATIONS

ELEVATION (ft)	OUTFLOW (cfs)	STORAGE (cu-ft)	2S/t (cfs)	2S/t + 0 (cfs)
47.00 47.50 48.00 48.50 49.00 49.50 50.00 51.50 51.00 52.00 52.50 53.00 54.00 54.50	0.0 0.0 0.0 0.0 0.0 1.0 14.1 30.1 46.2 55.0 63.8 70.7 77.5 99.6 121.6 135.5	76,452 93,492 110,919 128,734 146,935 165,521 184,493 203,849 223,612	0.0 3.6 31.8 94.4 184.1 290.2 398.7 509.7 623.3 739.5 858.3 979.6 1103.5 1230.0 1359.0	0.0 3.6 31.8 94.4 184.1 291.2 412.8 539.8 669.5 794.5 922.1 1050.3 1181.0 1329.6 1480.6 1626.3
55.00 55.50 56.00	152.8 170.4 190.1	243,803 264,424 285,473	1625.4 1762.9 1903.2	1778.2 1933.3 2093.3

Time increment (t) = 5.0 min.

EXECUTED: 02-12-1994 22:38:57

Pond File: C:\BANDAK\G-199 .PND Inflow Hydrograph: C:\BANDAK\G-10 .HYD Outflow Hydrograph: C:\BANDAK\OUT .HYD

INFLOW HYDROGRAPH

ROUTING COMPUTATIONS

Page 2

	TIME	INFLOW	11+12	2S/t - 0	2S/t + 0	OUTFLOW	ELEVATION
	(min)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(ft)
	4.0	11.69		0.0	0.0	0.00	47.00
	9.0	26.31	38.0	38.0	38.0	0.00	48.05
	14.0	40.93	67.2	105.2	105.2	0.00	48.56
	19.0	55.54	96.5	201.4	201.7	0.16	49.08
	24.0	70.16	125.7	317.3	327.1	4.87	49.65
į	29.0	70.16	140.3	418.2	457.7	19.75	50.18
	34.0	70.16	140.3	493.6	558.5	32.42	50.57
	39.0	70.16	140.3	550.4	634.0	41.79	50.86
	44.0	70.16	140.3	595.3	690.7	47.69	51.08
	49.0	58.47	128.6	623.9	723.9	50:03	51.22
Ì	54.0	43.85	102.3	625.8	726.2	50.19	51.23
ļ	59.0	29.23	73.1	602.4	698.9	48.27	51.12
	64.0	14.62	43.9	559.6	646.2	43.31	50.91
ı	69.0	0.00	14.6	505.5	574.2	34.37	50.63

EXECUTED: 02-12-1994 22:38:57

*********** SUMMARY OF ROUTING COMPUTATIONS ************

Pond File: C:\BANDAK\G-199 .PND
Inflow Hydrograph: C:\BANDAK\G-10 .HYD
Outflow Hydrograph: C:\BANDAK\OUT .HYD

Starting Pond W.S. Elevation = 47.00 ft

***** Summary of Peak Outflow and Peak Elevation *****

Peak Inflow = 70.16 cfs Peak Outflow = 50.19 cfs Peak Elevation = 51.23 ft

***** Summary of Approximate Peak Storage *****

Initial Storage = 0 cu-ft
Peak Storage From Storm = 101,398 cu-ft
Total Storage in Pond = 101,398 cu-ft

Warning: Inflow hydrograph truncated on left side.

```
POND-2 Version: 5.17 S/N:
                                                                        Page 4
     Pond File:
                           C:\BANDAK\G-199
                                                 . PND
    Inflow Hydrograph: C:\BANDAK\G-199
Outflow Hydrograph: C:\BANDAK\OUT
                                                 . HYD
                                                 . HYD
                                                             EXECUTED: 02-12-1994
    Peak Inflow
                            70.16 cfs
                                                                           22:38:57
    Peak Outflow =
                            50.19 cfs
    Peak Elevation =
                           51.23 ft
                                                                         Flow (cfs)
    0.0 8.0 16.0 24.0 32.0 40.0 48.0 56.0 64.0 72.0 80.0 88.0 
-----|----|----|----|----|----|
  TIME
  (min)
* File: C:\BANDAK\G-10
                                .HYD
                                        Qmax =
                                                    70.2 cfs
x File: C:\BANDAK\OUT
                                .HYD
                                        Qmax =
                                                    50.2 cfs
```

EXECUTED: 02-12-1994 22:41:28

Inflow Hydrograph: C:\BANDAK\G-25 .HYD Rating Table file: C:\BANDAK\G-199 .PND

----INITIAL CONDITIONS---Elevation = 47.00 ft
Outflow = 0.00 cfs
Storage = 0 cu-ft

GIVEN POND DATA

INTERMEDIATE ROUTING COMPUTATIONS

ELEVATION (ft)	OUTFLOW (cfs)	STORAGE (cu-ft)		2S/t (cfs)	2S/t + 0 (cfs)
47.00 47.50 48.00 48.50 49.00 49.50 50.00 50.50 51.50	0.0 0.0 0.0 0.0 1.0 14.1 30.1 46.2 55.0	0 533 4,765 14,157 27,613 43,524 59,800 76,452 93,492 110,919	·	0.0 3.6 31.8 94.4 184.1 290.2 398.7 509.7 623.3 739.5	0.0 3.6 31.8 94.4 184.1 291.2 412.8 539.8 669.5 794.5
52.00 52.50 53.00 53.50 54.00 54.50 55.00 55.50 56.00	63.8 70.7 77.5 99.6 121.6 135.5 152.8 170.4 190.1	128,734 146,935 165,521 184,493 203,849 223,612 243,803 264,424 285,473		858.3 979.6 1103.5 1230.0 1359.0 1490.8 1625.4 1762.9 1903.2	922.1 1050.3 1181.0 1329.6 1480.6 1626.3 1778.2 1933.3 2093.3

Time increment (t) = 5.0 min.

· * * /

EXECUTED: 02-12-1994 22:41:28

Pond File: C:\BANDAK\G-199
Inflow Hydrograph: C:\BANDAK\G-25
Outflow Hydrograph: C:\BANDAK\OUT . PND .HYD

.HYD

INFLOW HYDROGRAPH ROUTING COMPUTATIONS

ATION
t)
7.00
8.14
8.73
9.36
0.04
0.63
1.07
1.41
1.71
1.90
1.93
1.81
1.56
1.19
55555

Page 2

Page 3

POND-2 Version: 5.17 S/N:

EXECUTED: 02-12-1994 22:41:28

*********** SUMMARY OF ROUTING COMPUTATIONS *************

Pond File: C:\BANDAK\G-199 .PND Inflow Hydrograph: C:\BANDAK\G-25 .HYD Outflow Hydrograph: C:\BANDAK\OUT .HYD

Starting Pond W.S. Elevation = 47.00 ft

***** Summary of Peak Outflow and Peak Elevation *****

Peak Inflow = 90.74 cfs Peak Outflow = 62.60 cfs Peak Elevation = 51.93 ft

***** Summary of Approximate Peak Storage *****

Initial Storage = 0 cu-ft
Peak Storage From Storm = 126,304 cu-ft
Total Storage in Pond = 126,304 cu-ft

Warning: Inflow hydrograph truncated on left side.

Pond File: C:\BANDAK\G-199 . PND Inflow Hydrograph: C:\BANDAK\G-25 . HYD Outflow Hydrograph: C:\BANDAK\OUT .HYD

EXECUTED: 02-12-1994 Peak Inflow 90.74 cfs 22:41:28

Peak Outflow 62.60 cfs Peak Elevation = 51.93 ft

Flow (cfs) 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0 110.0 4.0 x 9.0 - | x х 14.0 - xx 19.0 - x x 24.0 x x 29.0 x x 34.0 x x 39.0 -44.0 -49.0 -54.0 -59.0 -64.0 x TIME (min) File: C:\BANDAK\G-25 .HYD Qmax =90.7 cfs C:\BANDAK\OUT File: .HYD Qmax =

62.6 cfs

EXECUTED: 02-12-1994 22:42:20

Inflow Hydrograph: C:\BANDAK\G-100 .HYD Rating Table file: C:\BANDAK\G-199 .PND

----INITIAL CONDITIONS---Elevation = 47.00 ft
Outflow = 0.00 cfs
Storage = 0 cu-ft

GIVEN POND DATA

INTERMEDIATE ROUTING COMPUTATIONS

ELEVATION (ft)	OUTFLOW (cfs)	STORAGE (cu-ft)		2S/t (cfs)	2S/t + 0 (cfs)
47.00 47.50 48.00 48.50 49.00 49.50 50.00 50.50 51.00 51.50 52.00 52.50 53.00	0.0 0.0 0.0 0.0 1.0 14.1 30.1 46.2 55.0 63.8 70.7 77.5	0 533 4,765 14,157 27,613 43,524 59,800 76,452 93,492 110,919 128,734 146,935 165,521		0.0 3.6 31.8 94.4 184.1 290.2 398.7 509.7 623.3 739.5 858.3 979.6 1103.5	0.0 3.6 31.8 94.4 184.1 291.2 412.8 539.8 669.5 794.5 922.1 1050.3 1181.0
53.50 54.00	99.6 121.6	184,493 203,849		1230.0 1359.0	1329.6 1480.6
54.50 55.00 55.50	135.5 152.8 170.4	223,612 243,803 264,424		1490.8 1625.4 1762.9	1626.3 1778.2 1933.3
56.00	190.1	285,473	Ì	1903.2	2093.3

Time increment (t) = 5.0 min.

EXECUTED: 02-12-1994 22:42:20

Page 2:20

Pond File: C:\BANDAK\G-199 .PND
Inflow Hydrograph: C:\BANDAK\G-100 .HYD
Outflow Hydrograph: C:\BANDAK\OUT .HYD

INFLOW HYDROGRAPH

ROUTING COMPUTATIONS

I mine						
TIME	INFLOW	I1+I2	2S/t - O	2S/t + 0	OUTFLOW	ELEVATION
(min)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)	(ft)
4.0	21.13		0.0	0.0	0.00	47.00
9.0	47.53	68.7	68.7	68.7	0.00	48.29
14.0	73.94	121.5	190.0	190.1	0.06	49.03
19.0	100.35	174.3	346.6	364.3	8.88	49.80
24.0	126.76	227.1	505.1	573.7	34.30	50.63
29.0	126.76	253.5	653.6	758.6	52.47	51.36
34.0	126.76	253.5	781.6	907.2	62. 7 7	51.94
39.0	126.76	253.5	895.4	1035.1	69.88	52.44
44.0	126.76	253.5	997.2	1148.9	75.83	52.88
49.0	105.63	232.4	1060.2	1229.6	84.73	53.16
54.0	79.22	184.9	1071.0	1245.0	87.02	53.22
59.0	52.82	132.0	1041.5	1203.0	80.77	53.07
64.0	26.41	79.2	972.0	1120.7	74.36	52.77
69.0	0.00	26.4	862 ⁻ .6	998.4	67.91	52.30

EXECUTED: 02-12-1994 22:42:20

*********** SUMMARY OF ROUTING COMPUTATIONS *************

Pond File: C:\BANDAK\G-199 .PND Inflow Hydrograph: C:\BANDAK\G-100 .HYD Outflow Hydrograph: C:\BANDAK\OUT .HYD

Starting Pond W.S. Elevation = 47.00 ft

***** Summary of Peak Outflow and Peak Elevation *****

Peak Inflow = 126.76 cfs Peak Outflow = 87.02 cfs Peak Elevation = 53.22 ft

***** Summary of Approximate Peak Storage *****

Initial Storage = 0 cu-ft
Peak Storage From Storm = 173,692 cu-ft
Total Storage in Pond = 173,692 cu-ft

Warning: Inflow hydrograph truncated on left side.

Pond File: C:\BANDAK\G-199 .PND
Inflow Hydrograph: C:\BANDAK\G-100 .HYD
Outflow Hydrograph: C:\BANDAK\OUT .HYD

Peak Inflow = 126.76 cfs EXECUTED: 02-12-1994
22:42:20

Peak Outflow = 87.02 cfs
Peak Elevation = 53.22 ft

CERTIFICATION

SECTION 5: UNITS, 97-133

GENERAL NOTES

- 1. PROPERTY ZONING: LIMITED RESIDENTIAL DISTRICT R-2.
- 2. PROPERTY TAX PARCEL NO.: PART OF (32-4) (1-26C)
- 3. PROPERTY ADDRESS: 4870 LONGHILL ROAD
- 4. THIS SITE PLAN IS FOR A SECTION OF TIMESHARE UNITS WHICH IS PART OF AN APPROVED OVERALL CLUSTER DEVELOPMENT PLAN (JCC CASE NO. MP-02-00).
- 5. THE UNITS ARE 2 STORIES, USE GROUP B, AND CONSTRUCTION TYPE 3B. MAXIMUM BUILDING HEIGHT IS
- 6. OVERALL SITE DENSITY IS 3.99 UNITS/ ACRE AS APPROVED WITH AMENDED MASTER
- 8. THE CONTRACTOR SHALL SATISFY HIMSELF AS TO ALL SITE CONDITIONS PRIOR TO CONSTRUCTION. CONTRACTOR SHALL VERIFY ALL DIMENSIONS AND SHALL NOTIFY MISS UTILITY (1-800-552-7001)
- 9. VERIFY ALL DIMENSIONS AND NOTIFY JAMES CITY SERVICE AUTHORITY PRIOR TO ANY EXCAVATION OR

- NATURAL GAS, VIRGINIA POWER, APPROPRIATE TELEPHONE COMPANY, APPROPRIATE CABLE COMPANY.
- 14. ALL PARKING SPACES SHALL BE DELINEATED WITH PAINT STRIPING. THE MINIMUM NUMBER OF PARKING SPACES SHALL BE 2.5 PER DWELLING UNIT, IN ACCORDANCE WITH SEC. 24-59 (A) (1) OF THE JCC ZONING ORDINANCE. HANDICAP PARKING SPACES SHALL BE DESIGNATED BY ABOVE GROUND SIGNS PER
- 15. REFUSE TO BE REMOVED BY PRIVATE CONTRACTOR.
- 16. THE SITE DOES NOT LIE WITHIN ANY RESOURCE PROTECTION AREAS.
- 17. THIS PROPERTY LIES IN ZONE "X" (AREAS DETERMINED TO BE OUTSIDE THE 500 YEAR FLOOD PLAIN) AS SHOWN ON COMMUNITY PANEL #510201 0035 B, DATED 2/6/ 1991 OF THE FLOOD INSURANCE RATE MAPS FOR JAMES CITY COUNTY, YRGIÑIA.
- 18. CONTOUR INTERVAL IS ONE FOOT.
- 19. ANY NEW SIGNS SHALL BE IN ACCORDANCE WITH ARTICLE II, DIVISION 3 OF THE JCC ZONING ORDINANCE.
- 20. ANY OLD WELLS THAT MAY BE ON-SITE THAT WILL NOT BE USED MUST BE PROPERLY ABANDONED ACCORDING TO STATE PRIVATE WELL REGULATIONS AND JAMES CITY COUNTY CODE.
- 21. OWNER / DEVELOPER: THE BERKELEY GROUP
 - BERKELEY SOUTH BLDG, EXEC. SUITE #15 3015 N. OCEAN BLVD
 - FT. LAUDERDALE, FL 33308

INDEX OF SHEETS

SHEET NUMBER	DESCRIPTION
2A	COVER SHEET SITE AND UTILITY PLAN/GRADING, DRAINAGE AND E&S PLAN (PHASE I) UTILITY PROFILES, NOTES AND DETAILS (PHASE I)
	SITE PLAN (PHASÉ II)
5 6 7 8 9	DRAINAGE AND UTILITY PLAN UTILITY PROFILES LANDSCAPE PLAN AND DETAILS LIGHTING PLAN AND DETAILS ENVIRONMENTAL INVENTORY NOTES AND DETAILS
	NOTES AND DETAILS SMP (VDOT FACILITY "G") NOTES AND DETAILS

FOR

WILLIAMSBURG PLANTATI

DATE: AUGUST 23, 2000 REVISED: NOVEMBER 16, 2000 PROJECT NO.: 7555-12

I HEREBY CERTIFY TO THE BEST OF MY JUDGEMENT, KNOWLEDGE, AND BELIEF THAT THIS RECORD DRAWING REPRESENTS THE CONDITIONS OF THE SITE ON THE DATE IT WAS

CONSULTING ENGINEERS

248 Olde Towne Road, Suite 1 Williamsburg, Virginia 23188 (757) 253-0040 Fax (757) 220-8994

RECORD DRAWING BASED ON INFORMATION AS SURVEYED 5-02 & 3-04 BY A.E.S. CONSULTING **ENGINEERS**

			ور دوارورودودودودودود
7	3/10/04	RECORD DRAWING STORM WATER MANAGEMENT/ BMP FACILITY	CBR
6	3/27/03	RECORD DRAWING STORM WATER MANAGEMENT/ BMP FACILITY	CBR
5	5/4/01	REVISED PER JCSA COMMENTS DATED 5/4/01	CBR
4	4/17/01	REVISED PER JCC ENVIR. COMMENTS AND TO INDICATE PHASING	CBR
3	3/23/01	REVISED PER VDOT COMMENTS (DRY POND) FACILITY "G"	CBR
2	11/16/00	REVISED PER JCSA COMMENTS	CBR
	10/18/00	REVISED SITE LAYOUT & REVISIONS PER JCC COMMENTS	CBR
N	DATE	REVISION / COMMENT / NOTE	BY

JCC S-103-00 RECORD DRAWING-3/10/04 SHEET NO.

TO PROVIDE THE REQUIRED WATER QUALITY ORIFICE, ALL STORMWATER MANAGEMENT (SWM) BASINS SHALL BE CONSTRUCTED WITH THE FOLLOWING PIPES OF CONCRETE, AN OPENING SHALL BE PROVIDED IN THE CONCRETE WALL: 12" MAX. OR 6" MIN. AND SHALL BE COVERED

CONCRETE CRADLE